

Biofuels: Facilitating an evidence based discussion of their potential

Ravi Prabhu (drawing also on notes from Carlos Sere)

Here's the question ...

Can the demand for Biofuels

- contribute to economic growth
- attract new investments into rural areas,
- provide additional incomes with their multiplier effects in the local economy and thus
- boost broad based, equitable development?

Biofuels should be

Providing affordable, sustainable energy while

- Feeding a growing population
 - 1 billion hungry, 2 billion with malnutrition
 - 9 billion by 2050
- Lifting people out of poverty
 - Securing livelihoods, especially when small-holder agriculture is the only option for most
- Reversing land degradation and securing ecosystem services
 - Mitigating greenhouse gases
 - Securing water, nutrients and other services

World's greatest renewable but are we expecting too much?

Source: IEA Bioenergy 2009

Sketching the opportunity

- A 1% p.a. increase in agriculture growth leads
 to a 2.7% increase in income of the lowest 3
 income deciles in developing countries (WDR 2007)
- Agriculture is 2.5 to 3 times more effective in increasing income of the poor than is non-agriculture investment (WDR 2007)
- Agriculture growth, as opposed to growth in general, is typically found to be the primary source of poverty reduction (IFPRI, 2007)

Sketching the opportunity 2

- Need diversified sources of income and employment in rural areas, and for this, investment – including in energy – appears to be a critical driver
- Rural areas are starved for energy, and without energy, growth is always going to be very difficult

Challenges

Transform smallholder agriculture into successful agribusiness

- The provision of energy is an important part of this effort
- Corporate private sector investment is key to achieve this along the value chain.

- Ensuring good business models

- Inclusive & equitable
- Out grower models?
- Fairness in sharing risks and rewards along the value chain

Challenges 2

Need to

- Avoid compromising of food security,
- Conserve the environment,
- Reduce deforestation and
- Maintain biodiversity;
- Minimize water usage in biofuel production (by using water efficient crops)
- Understand and use the 'swing potential' for benefit

Challenges 3

- Understand complex relationships between biofuels production and the rest of the functions of the ecosystem
 - · competition and complementarity,
 - short and long term.
- Policy environment to maximise societal benefits
 - winners and losers:
 - understand who they are
 - how they are affected
 - how equitable solutions can be developed

E.g. Aviation biofuels

- Aviation industry about 2 percent of manmade CO2
 emissions but air transport is set to grow at 5 percent annual rate in the coming 20 years^[1]
- Airlines must use liquid fuel.
- Fuel is also the highest operating cost
- Little alternative but to switch to an extensive USE of SUSTAINABLE bio-fuels.
 - non-food crops, requiring small landmasses and proportionally less fertilizer, water and energy.
 - present an economically viable opportunity to sustainably power the world's commercial aircraft fleet.
 - bottom-line implications of second-generation bio-fuel are increasingly promising.

E.g. Aviation biofuels 2

- Important to expand the portfolio of potential feedstocks and work on their agronomics to increase their energy yields.
- Sound, sound and timely regulatory policies are critically important
- Existing policy mechanisms are insufficient to support the development of aviation biojet,
 - some are providing a disincentive for producers to invest in biojet production.
- Huge **potential** can be **unlocked by working together** with industry, users, governments, NGOs with positive implications that will benefit the entire value chain.

Take home messages

- Opportunity to generate incomes and energy for poor rural people
- Number of challenges
 - technology, resources used, impacts on land tenure, impact on food security,
- Processes to get to decisions has to be very inclusive
- Farmers need to play a key role in this
 - their livelihoods that are often the most directly affected
- Need significant resources
 - to rapidly learn about these new technologies, new crops, new investment opportunities, new social and environmental sustainability challenges.

Efficiency

What does this mean for large- and small-scale operations?

Fairness

The Evening Agenda

- Hugo Lucas, Director of Policy Advice and Capacity Building, International Renewable Energy Agency (State of energy needs related to climate change)
- Kuntoro Mangkusubroto, Head of Indonesian President's Delivery Unit for Development Monitoring and Oversight (Indonesia's vision on biofuel development)
- Jason Funk, Environmental Defense Fund (impacts of scaling up small holder biogas efforts)
- Facilitated Participant Interactions
- Discussant Insights:
 - Marja Liisa Tapio-Bistrom, Senior Officer Climate Change (FAO) Integrated Food and Energy Systems
 - Rodrigo CA Lima, General Manager, Institute for International Trade Negotiations (Business Sector Approaches)
- Plenary Discussion
- Closing

Thank You!

3RD WORLD CONGRESS OF AGROFORESTRY

10-14 February 2014 New Delhi, India

Mark the date!

E.g. Integrated Food Energy Systems

- Type 1
 - Energy crops and food crops grown together with synergies
 - Reduced erosion, storm protection (climate change adaptation)
 - Increased yields of food crops
 - E.g. Agroforestry

Type 2

- Cascading use of biomass with nutrient recycling
 - 'Closed Loop' systems
 - E.g. Coconut, gliricidia,
 paddy straw food
 - +biofuel animal feed – biogas – fertiliser

DEVELOPMENT OF GUIRIGIDIA AS A MULTIPURPOSE TREE FOR GENERATION OF BIO:ENERGY AND BIO:EERTILIZER

Ottored

- Demonstration of the performance of coconut/cattle/gliricidia/Paddy straw based farming system to maximize milk production
- Introduction of economically viable gliricidia based cattle green manure system along with fuel wood farming

Company of

- *Cocanut 1.0 ha (150 palms)
- Gliricidia inter cuttivation 1:0 ha (7000 trees) Cattle 6 cows.
- *Integrated feeding Native pasture/ Gliricidia/ Paddy Straw
- * Bio- gas production

District Committee of

September, 2005

Bracket Datherningson Falsi

Redirect development pathways towards environmental integrity, with benefits for people

Tree cover on farms

Nearly half of agricultural land has more that 10% tree cover