










A Sample of BOCM MRV Methodology							
Calculation Spreadsheet fo				- 9.			
Option 1-1: Bio-Diesel_Plant	Oil_Result						
•							
1. Monitoring and input after pr	oject start						
Description of data		Val					
Projct consumption of bio	diesel in year y		kl/y				
2. CO2 emission reductions							
CO2 emission reductions		Unit					
		tCO2/y					

and when the	\rightarrow	Gec Global Env	ironment Centre Foundation
Calculation For	mula in	the San	nple Meth
Default Values = should be pre	e-set in the MR	V methodology	
Item	Value	Unit	Parameter
NCV of BDF	34.0	GJ/kl	$NCV_{BD,y}$
CO2 EF of Petro-Diesel	0.0687	tCO2/GJ	$EF_{f,i,y}$
Cultivation of plant feedstock	0.222	tCO2/kl	APE _{cul,y}
Transport of plant feedstock	0.111	tCO2/kl	APE _{trm,y}
Production of BDF	1.234	tCO2/kl	APE _{pro,y}
Transport of BDF	0.111	tCO2/kl	APE _{tbdf,y}
Reference Emissions = Producti = [xxx,xxx	ons of BDF (kl/y kl] x 34.0 x 0.06) x NCV _{BD,y} (GJ/kl) > 87	ε EF _{f,i,y} (tCO2/GJ)
Project/Activity Emissions = APEs (= (0.222 -	cul,y + trm,y + pro,y + tb + 0.111 + 1.234 +	_{df,y}) (tCO2/kl) x Prod ⊦ 0.111) x [xxx,xxx k	uctions of BDF (kl/y) I]
Emission Reductions = Ref	erence Emiss	sions – Project/A	Activity Emissions

the state		Æ	Global Environment Centre Foundat		
		Let's u	se it!		
Calcu	llation Spreadsheet for	GHG Emissio	n Reductions: Sir	mplest example	
Option	1-1: Bio-Diesel_Plant (Dil_Result			
1 Monit	oring and input after pro	viect start			
	Description of data	Joor Start	Value	Unit	
	Projct consumption of			kl/y	
2. CO2 e	emission reductions				
	CO2 emission red	uctions	Unit		
		0	tCO2/y		

