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The past, present and future of African dust
Amato T. Evan1,2, Cyrille Flamant2, Marco Gaetani2 & Françoise Guichard3

African dust emission and transport exhibits variability on diurnal1 
to decadal2 timescales and is known to influence processes such 
as Amazon productivity3, Atlantic climate modes4, regional 
atmospheric composition and radiative balance5 and precipitation 
in the Sahel6. To elucidate the role of African dust in the climate 
system, it is necessary to understand the factors governing its 
emission and transport. However, African dust is correlated with 
seemingly disparate atmospheric phenomena, including the  
El Niño/Southern Oscillation7,8, the North Atlantic Oscillation9, 
the meridional position of the intertropical convergence zone10,11, 
Sahelian rainfall8 and surface temperatures over the Sahara 
Desert12, all of which obfuscate the connection between dust and 
climate. Here we show that the surface wind field responsible for 
most of the variability in North African dust emission reflects the 
topography of the Sahara, owing to orographic acceleration of the 
surface flow. As such, the correlations between dust and various 
climate phenomena probably arise from the projection of the winds 
associated with these phenomena onto an orographically controlled 
pattern of wind variability. A 161-year time series of dust from 1851 
to 2011, created by projecting this wind field pattern onto surface 
winds from a historical reanalysis13, suggests that the highest 
concentrations of dust occurred from the 1910s to the 1940s and 
the 1970s to the 1980s, and that there have been three periods of 
persistent anomalously low dust concentrations—in the 1860s, 
1950s and 2000s. Projections of the wind pattern onto climate 
models give a statistically significant downward trend in African 
dust emission and transport as greenhouse gas concentrations 
increase over the twenty-first century, potentially associated with a 
slow-down of the tropical circulation. Such a dust feedback, which 
is not represented in climate models, may be of benefit to human 
and ecosystem health in West Africa via improved air quality14 and 
increased rainfall6. This feedback may also enhance warming of the 
tropical North Atlantic15, which would make the basin more suitable 
for hurricane formation and growth16.

We perform an eigenanalysis of zonal and meridional wind speeds at 
10 m above the surface from the European Centre for Medium-Range 
Weather Forecasts Interim reanalysis product17  (ERA-I) to identify 
coherent variability in wind fields associated with dust emission and 
transport (see Methods). Most relevant to this study is the second 
empirical orthogonal function (EOF) and corresponding principal 
component (PC) time series from the eigenanalysis of 10-m winds 
(Fig. 1a), which explains approximately 20% of the variance in the data 
(EOFs and PCs for the first and third modes are shown in Extended 
Data Fig. 1). The spatial structure of the second EOF maximizes in 
the region of 15° N and 10°–20° E, with secondary maxima extending 
towards the northwest (Fig. 1a). The wind fields in this EOF exhibit a 
northeasterly flow across much of the Sahara, characteristic of the trade 
winds, as well as a westerly flow near 30° N and 0° E.

The corresponding second PC time series (PC2) has a maximum 
in the 1980s, which is followed by a steep decline over the following 
decade (Fig. 1b). From 2000 through to the end of the record, values for 
the ERA-I PC2 largely remain between 0 and − 1 standard deviations. 
The time series of ERA-I PC2 is strikingly similar to that of dust optical 

depth over the Cape Verde islands (15° N, 23.5° W) retrieved from the 
Advanced Very High Resolution Radiometer (AVHRR) space-borne 
imager2. We average over this area in order to compare to coral proxy 
data2, but note that dust over Cape Verde is highly representative of dust 
over the entire tropical North Atlantic2 and our results are qualitatively 
identical if we instead average the AVHRR data over the entire tropi-
cal North Atlantic. In Fig. 1b both monthly time series are smoothed 
with a 13-month running mean filter to highlight variability on inter-
annual and longer time scales. The correlation between the ERA-I PC2 
and AVHRR dust smoothed time series is 0.76 (P ≈  0.01; all P values 
reported here account for time series autocorrelation). The ERA-I wind 
fields and dust retrievals from the AVHRR are independent, so the fact 
that ERA-I PC2 explains 58% of the variance in the AVHRR dust data is 
strong evidence that dust emission and transport, on these temporal and 
spatial scales, can also be approximated as a linear function of surface 
wind speeds over the Sahara (see Methods and Extended Data Fig. 2).
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Figure 1 | Second EOF/PC of North African 10-m winds. a, The spatial 
structure of the second EOF of 10-m winds over North Africa. Arrows  
and shading represent the direction and magnitude of monthly mean 
winds, respectively, in units of wind speed per unit standard deviation 
(s.d.) change in the PC time series. b, The associated PC time series  
(10-m winds) and a time series of dust optical depth averaged over the 
tropical North Atlantic (AVHRR dust). The second EOF/PC explains 15% 
of the total variance in the surface winds data.
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The spatial structure of the second EOF (Fig. 1a) closely resembles 
the topography over the Sahara (Fig. 2). In particular, the wind vectors 
exhibit a maximum in magnitude downstream of the gaps between the 
major Saharan mountains and plateaus, which are indicated by the tran-
sect lines and labels a–e (surface elevations are shown for each transect 
in Extended Data Fig. 3). It is not surprising that this EOF of 10-m winds 
reflects surface topography; flow acceleration at the exit region of a gap 
results in an increase of the variance of the down-gap winds, relative to 
variance of the up-gap, non-accelerated winds18. This similarity in the 
spatial structure of the second EOF and the orography of the Sahara, and 
the high correlation between the PC2 and the AVHRR dust time series, 
are both consistent with previous work showing that most dust emitted 
from the Sahara is generated within major topographic depressions19. 
According to a recent study20, approximately 85% of all North African 
dust emission occurs within the areas indicated with blue hatching, 
which are generally downwind of the gaps indicated in Fig. 2, and which 
encompasses the regions where the magnitude of the second EOF is high.

We next project the spatial structure of the second EOF (Fig. 1a) onto 
the NOAA-CIRES 20th Century Reanalysis21 (CIRES-20CR) monthly 
mean 10-m wind fields to recreate a historical proxy record of dust 
emission and westward transport over the Atlantic. We convert the units 
of the CIRES-20CR PC2 time series to dust optical depth by linearly 
scaling the CIRES-20CR PC2 time series so that its  standard deviation 
and mean are identical to that from the AVHRR data over their com-
mon time period of 1982–2009 (blue line in Fig. 3a). The CIRES-20CR 
PC2 time series is highly correlated with the ERA-I PC2 series (orange 
line in Fig. 3a) at an r value of 0.63 (P <  0.01), the AVHRR dust optical 
depth time series (yellow line in Fig. 3a) at r =  0.54 (P <  0.02), and a 
54-year dust proxy dust time series based on AVHRR data and other 
data from a Cape Verde coral2 (purple line) at r =  0.55 (P <  0.01). These 
r and P values were calculated using unsmoothed annual time series.

The positive and statistically significant correlations between 
the CIRES-20CR PC2 time series and the other dust time series in  
Fig. 3a are evidence that this record of over 150 years can be used to 
study historical North African dust emission and transport. Over the 
entire CIRES-20CR PC2 time series, there are two relatively persis-
tent periods of increased dustiness, 1910–1950 and 1970–1990, and 
three periods of low dust concentrations, the mid-1860s to early 1870s, 
1950 to the late 1960s, and the last 15 years of the record. There is not  
a  secular trend in dust emission and transport over the entire record, 
but there are coherent multi-decadal trend periods, including upward 
trends from 1870–1910 and the late 1950s to the mid-1980s, and down-
ward trends from the mid-1940s to 1960 and the mid-1980s to the end 

of the record. In addition, the variance of the first half of the CIRES-
20CR PC2 time series (4.9 ×  10−3) is 58% of the variance of the second 
half of the record (8.4× 10−3), raising the possibility that anthropo-
genic forcing has caused an enhancement in year-to-year changes in 
the amount of dust emitted from North Africa.

Our results suggest that any phenomenon that excites surface winds 
over North Africa in a manner that projects onto the spatial structure in 
Fig. 1a will influence the net production and transport of Saharan dust. 
Such a theory reconciles the disparity of published work on the controls 
on North African dust production and suggests that, to first order, to 
understand dust variability one needs only to elucidate the factors that 
excite the pattern of surface wind speeds in Fig. 1a. Our results explain 
why although time series of dust are correlated with a diversity of climate 
phenomena, these correlations are not stationary in time. For example, 
an analysis of correlation coefficients between different climate indices 
and CIRES-20CR PC2, for a moving 31-year window, suggests that the 
high dust emissions of the 1910s and 1940s were related to the phase of 
the North Atlantic Oscillation, but that the high dust emissions of the 
1980s were associated with the Sahelian drought (Extended Data Fig. 4).

We next examine simulated changes in African dust during the 
twenty-first century using output from the Fifth Climate Model 
Intercomparison Project (CMIP5, Extended Data Table 1). As CMIP5 
models are unable to reproduce observed twentieth-century changes 
in African dust22 we estimate future dustiness by projecting the 
EOF  pattern in Fig. 1 onto the monthly mean 10-m wind fields for 
these models. We first consider winds from the so-called ‘business-  
as-usual’ scenario (RCP 8.5), in which emissions of greenhouse gases 
continue to increase throughout the twenty-first century23. We convert 
ensemble mean CMIP5 PC2 time series to unit dust optical depth by 
scaling each series so that its standard deviation is equal to the stand-
ard deviation of the entire CIRES-20CR PC2 time series (Fig. 3b).  
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Figure 2 | North African orography and dust source regions. Shading 
represents surface elevation and transects indicate regions where 
orography increases the magnitude of the surface wind speed; the relevant 
topographic features are indicated in the legend and the surface altitude 
along each transect is shown in Extended Data Fig. 3. The red-hatched 
regions encompass the major Saharan dust sources20.

Figure 3 | Estimates of North Atlantic dust. a, PC2 time series from the 
CIRES-20CR and ERA-I reanalyses, and the AVHRR and hybrid satellite-
coral (Cape Verde) dust time series. The ERA-I PC2 data are scaled to be 
in units of dust optical depth in a manner identical to that for the CIRES-
20CR PC2 time series. b, The CMIP5 ensemble mean PC2 time series, the 
multimodel mean CMIP5 PC2 time series and its linear trend. The dashed 
blue lines are the long-term mean of the CIRES-20CR PC2 time series. 
Annual mean time series are smoothed with a 1-4-6-4-1 filter.
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We also offset each model’s mean optical depth so that the mean of 
the first five model years (2005–2010) is equal to 0.4, the long-term 
mean of the CIRES-20CR PC2 time series (blue dashed line, Fig. 3b).

The twenty-first-century CMIP5 PC2 time series for each model is 
a typical ‘spaghetti plot’ (grey lines in Fig. 3b), reflecting the  models’ 
internal variability; the range of individual model dust optical 
depth values is 0.2 to 0.6. The CMIP5 multimodel mean time series 
(thick black line) shows a statistically significant downward trend  
of − 0.04 ±  0.01 (in units of dust optical depth) per 100 years (red line in 
Fig. 3b). This 100-year change is approximately 40% of the magnitude 
of the models’ standard deviation over the same period and represents 
a 10% reduction in the CIRES-20CR PC2 long-term mean dust optical 
depth. Furthermore, 15 of the 34 models considered here have statis-
tically significant downward trends in dust optical depth yet only six 
models have statistically significant upward trends in dust optical depth 
(Extended Data Fig. 5a). We repeated this analysis for the RCP 4.5 simu-
lations, in which emissions of greenhouse gases peak during 2040–2050, 
finding a statistically significant downward trend in dust optical depth 
of − 0.02 ±  0.01, half of that for the RCP 8.5 simulation (Extended Data 
Fig. 5b). The multimodel mean time series from the RCP scenarios 
represent an estimate of the response of dust to increasing levels of 
greenhouse gasses and do not reflect other sources of variability.

From our analysis of the CMIP5 data we conclude that the future 
reduction in emission and transport of dust from Africa is a robust 
response to increasing greenhouse gas emissions. The CMIP5 trends 
were not sensitive to the types of aerosol indirect effects included in the 
model, suggesting that the trend is not related to twenty-first- century 
changes in the concentration of atmospheric aerosols included in the 
simulations. We estimate the ‘time of emergence’ of the greenhouse gas 
forced trend to be 200 years (P =  0.05) based on bootstrap  resampling 
tests using noise characteristics from the CIRES-20CR PC2 time series 
(see Methods), and thus the trend in the CMIP5 multimodel mean 
is consistent with the lack of a trend over the entire CIRES-20CR 
PC2 time series (Fig. 3). However, there is a statistically significant 
downward trend in CIRES-20CR PC2 over the twentieth century 
(− 0.08 ±  0.06 per 100 years). It is plausible that the twentieth- and 
twenty-first-century PC2 downward trends are associated with a  
slow-down of the tropical circulation24.

This decline in dust over North Africa may result in a slight 
improvement in air quality in the region, although the effect of 
regional population growth and urbanization will undoubtedly 
overshadow the benefits of a reduction in airborne dust25. While the 
radiative forcing of dust may be near zero over North Africa, as short-
wave cooling is approximately balanced by the longwave warming6, 
dust transported over the tropical North Atlantic cools the surface 
via direct2,15 and indirect26 radiative effects. Therefore, a reduction 
in dust would act as a positive feedback to warming by greenhouse 
gases in the tropical North Atlantic. Furthermore, since this feed-
back is not pan-tropical, this additional dust-forced warming could 
increase hurricane activity by increasing tropical North Atlantic sea  
surface temperature27, relative sea surface temperature (which is the 
difference between sea surface temperature in the tropical Atlantic 
and the sea surface temperature averaged over all of the tropics28), 
and the northward meridional sea surface temperature gradient4,29. 
The radiative and temperature effects from such a reduction in dust 
are not captured in most CMIP5 simulations; many models do not 
have interactive dust, and of those models that do, the majority show 
an increase in simulated African dust concentrations during the 
twenty-first century (Extended Data Fig. 6). Thus, it is plausible that 
current temperature projections for the tropical Atlantic through the 
Caribbean are too conservative.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
EOF and PC calculations. To calculate the EOFs of 10-m winds over North 
Africa we removed the mean and seasonal cycle from the monthly mean zonal 
and meridional wind fields from ERA-I for the period 1979–2014. ERA-I contains 
global atmospheric parameters from January 1979 to the present, at T255 spectral 
resolution (approximately 80 km). We spatially smoothed the monthly mean data 
via a uniformly weighted 3° ×  3° filter and divided the data into subsets from 
− 20° to 30° E and 2° to 35° N, with over-water values masked out. Eigenvectors 
were calculated from these smoothed and subsetted fields. The PC time series 
were calculated by projecting the subsequent eigenvalues back onto the data, and  
the EOF spatial pattern (Fig. 1a) is the regression of the meridional and zonal wind 
fields onto the PC time series. The PC time series for the CIRES-20CR (Fig. 3a) 
was calculated by smoothing and subsetting the CIRES-20CR 10-m zonal and 
meridional wind fields in a manner identical to that done for the ERA-I data. 
We then projected the second eigenvector from the ERA-I EOF analysis (Fig. 1) 
onto the CIRES-20CR wind fields to derive an equivalent PC time series for the 
CIRES-20CR data set.

We repeated the eigenanalysis of 10-m winds using other reanalysis products, 
including the NOAA-CIRES Twentieth-Century Reanalysis13, the ERA Twentieth-
Century Reanalysis31, the NASA Modern-Era Retrospective analysis for Research 
and Applications32, the NCEP-DOE AMIP-II Reanalysis33 and the NCEP NCAR 
Reanalysis34 (Extended Data Fig. 7). While the results from the eigenanalysis of 
these other reanalysis products show elements of the second EOF from ERA-I, 
these were mixed among the first two or three EOFs, and rotation of the EOFs 
did not clearly separate out the dust signal as is seen in the ERA-I data (Fig. 1b).

Recent work has shown that, when compared to observations of surface winds 
from meteorological stations across the Sahel, 10-m winds from ERA-I are more 
accurate than those from other reanalyses30. We expanded on the analysis in 
ref. 30 to include stations in the Sahara, also finding that here 10-m winds from 
ERA-I were more accurate than those from other reanalysis products (Extended 
Data Fig. 8).

We also examined the PC2 time series from the CMIP5 historical forcing exper-
iments. These CMIP5 PC2 time series for individual models are constructed in 
a manner identical to that for the RCP 8.5 simulations in Fig. 3. The resultant 
multimodel mean time series had a standard deviation approximately 20% of that 
from the CIRES-20CR, and thus to facilitate comparison between the two we scaled 
the multimodel mean time series to have a standard deviation equal to that of 
the CIRES-20CR time series (Extended Data Fig. 9). The CIRES-20CR and the 
CMIP5 multimodel mean show some agreement in their trends, including a rise 
in dust emission and transport from 1880 to 1930 and a reduction in dust over 
the end of the record.

Variability in the multimodel mean historical forcing simulations should reflect 
external forcing only, that is, associated with variations in solar insolation, green-
house gases or aerosol concentrations but not internal variability of the climate 
system. Thus, disagreement between the two time series may be due to a combina-
tion of internal variability of the physical climate system and poor representation 
of key processes controlling surface winds over North Africa on these timescales, 
where the latter may also be a major reason why the variance in the multimodel 
mean time series was one-fifth of that from CIRES-PC2.
Linearization of the relationship between wind speed and dust emission. The 
results in Fig. 1b suggest that monthly mean dust emission and transport is, to 
first order, linearly proportional to monthly mean surface wind speed. Such an 
assumption is common, although often implicit, when examining the interannual 
variability of dust (for example, refs 9–12), which may be unexpected given that 
dust emission is proportional to the cube of wind speed (for example, ref. 35). To 
test this assumption we analysed hourly data from three synoptic stations in the 
Sahara that are close to the major dust source regions (Djanet and Tamanrasset 
in Algeria and Agadez in Niger). We calculated the so-called dust uplift potential 
(DUP)36 using the characteristic emission threshold of 6 m s−1 (refs 37–39). From 
the hourly data we calculated the monthly mean wind speed and the monthly mean 
DUP. At each station DUP is highly correlated with wind speed, with r values rang-
ing from 0.86 (Djanet) to 0.93 (Agadez) and P values <  0.01 (Extended Data Fig. 
2). These results demonstrate that on monthly and longer timescales the monthly 
mean dust emission is, to first-order, proportional to monthly mean wind speed.

As another test of the linearity assumption, and to remove potential biases 
related to seasonality of series autocorrelation, for each station we randomly drew 
24 ×  30 wind speed samples from the data set (representing a month of hourly wind 
speed observations), calculated the DUP, and then averaged these DUP and wind 
speed values. We repeated this procedure 100 times and calculated the correlation 
between the randomly sampled wind speed and DUP values, finding qualitatively 
similar r and P values for correlations between this monthly mean DUP and the 

measured wind speed at each station (not shown). We repeated this procedure, 
increasing the sampling to 1000 and 10,000, obtaining similar results with both 
(not shown). As a final test of the linearity assumption, we fitted the wind speed 
distribution for each station to a lognormal distribution, randomly sampled then 
averaged the distributions in a manner identical to that described above, and then 
calculated the pseudo monthly mean values of DUP and wind speed. The result-
ant correlation coefficients between DUP and wind speed were also qualitatively 
similar (not shown).

Although local changes in soil moisture and vegetation do influence dust 
 emission37,40, our results suggest that variability in North African dust emission 
and transport is little affected by such properties of the surface. This is because the 
main dust source regions (Fig. 2) are within the hyper-arid Sahara (defined as a 
mean annual rainfall of less than 100 mm), where soil moisture and vegetation are 
extremely limited (for example, ref. 41). The negligible influence of soil moisture 
and vegetation to the interannual variability of North African dust is consistent 
with recent modelling work5 as well as previous studies on the factors governing 
the interannual variability of dust (for example, refs 9–12).
Time of emergence. The time of emergence of the PC2 trends is an estimate of 
the length of the time series required to detect a trend at 95% confidence level, 
which we determined via a bootstrap method. To do so we created 1000 random 
(normal) time series of length 500 years with standard deviation equal to that 
of the CIRES-20CR PC2 time series (Fig. 3a) and a linear trend equal to that of 
the RCP 8.5 multimodel mean (Extended Data Fig. 5a). We calculated the linear 
least-squares trend and the 95% confidence interval on the trend for the time 
series using the first 2 years, then the first 3 years, then the first 4 years, through to  
500 years. The time of emergence is then calculated as the length of the time 
series for which the trend is statistically different from zero at the 95% confidence  
interval, which in this case is 195 years.
Data. CMIP5 data are available through the Earth System Grid (http://pcmdi9.
llnl.gov/). Satellite and proxy dust data are available through the PANGAEA Data 
Publisher for Earth and Environmental Science (http://doi.pangaea.de/10.1594/
PANGAEA.855141) and a map of North African dust emission is available from 
the same resource at http://doi.pangaea.de/10.1594/PANGAEA.855243. ERA-I and 
ERA Twentieth-Century Reanalysis data are available from the European Centre 
for Medium-Range Weather Forecasts (ERA-20CR) (http://www.ecmwf.int/). 
CIRES-20CR, DOE AMIP-II (NCEP2) and NCEP NCAR (NNRP) Reanalysis data 
are from the Earth System Research Laboratory (http://www.esrl.noaa.gov/). NASA 
Modern-Era Retrospective analysis for Research and Applications (MERRA) 
data are from the Goddard Earth Sciences Data and Information Services Center  
(http://disc.sci.gsfc.nasa.gov). Wind speed data from Saharan synoptic weather 
stations are from the Wyoming Weather Web (http://weather.uwyo.edu) and 
the AMMA database (http://database.amma-international.org). The Niño 3.4 
time series and Palmer Drought42,43 data are available from the NOAA Climate 
Prediction Center (http://www.cpc.ncep.noaa.gov). Jones North Atlantic 
Oscillation44 data are from the UK Climate Research Unit (http://www.cru.uea.
ac.uk/). The Saharan Heat Low thickness time series is calculated using ERA-I 
data via the methodology in ref. 45 and data on the latitude of the intertropical 
convergence zone are calculated using NNRP data via the methodology in ref. 10.
Code availability. The codes used to conduct the analysis presented in this  
paper and in the production of the figures are available at https://github.com/
amatoevan/2015DUST/.
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Extended Data Figure 1 | First three EOFs and PCs of 10-m winds over 
North Africa from ERA-I. Shown is the spatial structure of the first three 
EOFs from the eigenanalysis of monthly mean 10-m winds from ERA-I 

(a–c), and the corresponding PC time series in units of standard deviation 
(d–f). Descriptions of arrows, shading and time series are identical to that 
for Fig. 1. See Methods for details of the eigenanalysis.
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Extended Data Figure 2 | Comparison of monthly mean wind speeds 
and dust uplift potential. Shown are scatter plots (blue filled circles) of 
mean monthly DUP (ordinate axis) and wind speeds (abscissa axis) for 
the North African synoptic stations at Djanet, Algeria (a), Tamanrasset, 

Algeria (b) and Agadez, Niger (c). Also shown for reference are the  
least-squares best-fit lines (red). The correlation coefficient r and 
statistical significance P are indicated in each plot.
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Extended Data Figure 3 | Topography affecting surface winds across  
the Sahara. Shown are surface elevations along each transect in Fig. 2:  
the Atlas to the Ahaggar mountains (a), the Ahaggar to the Tibesti 
mountains (b), the Ahaggar mountains to the Aïr massif (c) and the 
Tibesti mountains to the Ennedi plateau (d). These topographic features  

accelerate the surface flow and give rise to the spatial structure of 
the second EOF and PC pair (Fig. 1a). The titles indicate the major 
topographic features bounding each transect. Note the different horizontal 
lengths (abscissa) and heights (ordinate) for each plot.
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Extended Data Figure 4 | Non-stationary correlations between  
CIRES-20CR PC2 and climate indices. Plotted is the correlation 
coefficient between the annual mean CIRES-20CR PC2 and the Jones 
North Atlantic Oscillation, Niño 3.4, the Sahel-averaged Palmer Drought 
Severity index (PDSI), the latitude of the intertropical convergence zone, 
and the 925–700 hPa thickness of the Saharan Heat Low (ZSHL). All 
correlation coefficients are for the preceding 31-year period (for example,  

the value of 0.6 for the Jones North Atlantic Oscillation in 1940 indicates 
that the correlation coefficient between the Jones North Atlantic 
Oscillation and the CIRES-20CR PC2 is 0.6 for the period 1910–1940). 
We indicate statistically significant correlations (P <  0.05) with a filled 
circle, although here the P value is not calculated using effective degrees of 
freedom (as is the case elsewhere in this Letter).
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Extended Data Figure 5 | CMIP5 RCP 4.5 and RCP 8.5 twenty-first-century trends in PC2. a, RCP 8.5. b, RCP 4.5. Shown are the PC2 linear trends 
(circles), 95% confidence intervals (error bars) and the multimodel mean trend (blue dashed line) for RCP 8.5 (top) and 4.5 (bottom) simulations.  
All trends are in units of dust optical depth per 100 years.
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Extended Data Figure 6 | CMIP5 RCP 8.5 twenty-first-century trends  
in estimated and modelled dust. Plotted is the CMIP5 models’  
twentieth-century trends in dust mass path for the RCP 8.5 experiments 
(abscissa) versus the twentieth-century trends calculated from the PC2 
time series (ordinate). Included here are only CMIP5 models for which 

dust mass path and 10-m wind data are available. The red line is the  
least-squares best-fit line (slope is not statistically different from zero) and 
the dashed line is the one-to-one line. All trends are in units of standard 
deviation per 100 years.
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Extended Data Figure 7 | EOF/PC pairs for various reanalyses. Shown are the first three EOFs (top rows) and corresponding PC time series (bottom 
rows) calculated from the CIRES-20CR, ERA-20CR, MERRA, NCEP2 and NNRP data sets. Percentages of the variance of the data set explained by each 
EOF/PC pair are shown.
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Extended Data Figure 8 | Wind speed comparisons between 
observations and reanalyses. Shown are the r2 values from the correlation 
between monthly mean surface winds from station data and monthly 

mean 10-m winds from reanalyses for five stations in the Sahara over the 
period 2000–2013. In all cases the r2 values for ERA-I are greater than  
0.5 and higher than those for the other reanalyses.
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Extended Data Figure 9 | Modelled and reanalysis time series of 
historical dust. Plotted is the PC2 time series from the CIRES-20CR, 
identical to that shown in Fig. 3a, and the CMIP5 multimodel mean  
PC2 time series from the historical forcing simulations. Both annul mean 
time series have been smoothed with an 11-point running mean filter  
to highlight decadal scale variability.
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Extended Data Table 1 | CMIP5 models used in this study

Shown are the modelling centres, model names, and the number of ensemble members for both RCP experiments and the historical forcing experiment examined in this study.
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