IAMC 1.5°C Scenario Explorer hosted by IIASA

Daniel Huppmann, Nikolay Kushin, Peter Kolp, Valentina Bosetti, Elmar Kriegler, Steven Rose, John Weyant, Volker Krey, Keywan Riahi and many others…

COP24 side event, Katowice, 10 December 2018
Scenarios in IPCC SR1.5

Global total net CO₂ emissions

Billion tonnes of CO₂/yr

In pathways limiting global warming to 1.5°C with no or limited overshoot, as well as in pathways with a high overshoot, CO₂ emissions are reduced to net zero globally around 2050.

Non-CO₂ emissions relative to 2010.

Emissions of non-CO₂ forcers are also reduced or limited in pathways limiting global warming to 1.5°C with no or limited overshoot, but they do not reach zero globally.

Methane emissions

Black carbon emissions

Nitrous oxide emissions

Source: IPCC SR1.5, Figure SPM.3a
Scenarios in IPCC SR1.5

Characteristics of four illustrative model pathways

Different mitigation strategies can achieve the net emissions reductions that would be required to follow a pathway that limits global warming to 1.5°C with no or limited overshoot. All pathways use Carbon Dioxide Removal (CDR), but the amount varies across pathways, as do the relative contributions of Bioenergy with Carbon Capture and Storage (BECCS) and removals in the Agriculture, Forestry and Other Land Use (AFOLU) sector. This has implications for emissions and several other pathway characteristics.

Breakdown of contributions to global net CO₂ emissions in four illustrative model pathways

- Fossil fuel and industry
- AFOLU
- BECCS

P1: A scenario in which social, business and technological innovations result in lower energy demand up to 2050 while living standards rise, especially in the global South. A downsized energy system enables rapid decarbonization of energy supply. Afforestation is the only CDR option considered; neither fossil fuels with CCS nor BECCS are used.

P2: A scenario with a broad focus on sustainability including energy intensity, human development, economic convergence and international cooperation, as well as shifts towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems with limited societal acceptability for BECCS.

P3: A middle-of-the-road scenario in which societal as well as technological development follows historical patterns. Emissions reductions are mainly achieved by changing the way in which energy and products are produced, and to a lesser degree by reductions in demand.

P4: A resource- and energy-intensive scenario in which economic growth and globalization lead to widespread adoption of greenhouse-gas-intensive lifestyles, including high demand for transportation fuels and livestock products. Emissions reductions are mainly achieved through technological means, making strong use of CDR through the deployment of BECCS.

Source: IPCC SR1.5, Figure SPM.3b
Objectives

• Openness
• Transparency (of IPCC assessment and related literature)
• Reproducibility (of results, tables and figures)
• Reusability (of scenario ensemble by other researchers and analysts)
Collaboration between institutions

IPCC Working Group III TSU
Assessment reports
SR1.5 and AR6

Integrated Assessment Modeling Consortium (IAMC)
research community organization

International Institute for Applied Systems Analysis (IIASA)
hosting infrastructure for scenario data collection and dissemination
Process of the scenario ensemble compilation

- Call for submission of scenarios
- Submission and compilation
- Verification of completeness and validation
- Repository
- Exploration and assessment
- Reuse of scenarios by other disciplines
Data Set Features

• 414 Scenarios

• Variables
 Energy system configuration and fuel mix, Emissions by species and sectors, CCS, CDR, Investment expenditure, Socio-economic indicators (population, GDP development, prices), Land use and agricultural production, Indicators for sustainable development

• 13 Modeling frameworks
 AIM/CGE, C-ROADS, GENeSYS-MOD, GCAM, IEA ETP Model, IEA World Energy Model, IMAGE, MERGE, MESSAGEix-GLOBIOM, POLES, REMIND-MAgPIE, Shell World Energy Model, WITCH
Scenario Explorer Features

• Audience: *scientific users and policy analysts*

• Workspace philosophy
 – Personalized workspace configurations
 – Analysis can be shared with others (e.g., workspace sharing, figure/data export)
 – SR1.5 Scenario Explorer includes predefined workspaces with figures from report
 – Integrated documentation (models, scenarios, variables, regions)

• Toolkit for data visualization and analysis (Python-based)
Scenario Explorer: Entry page

 IAMC 1.5°C Scenario Explorer hosted by IIASA release 1.0

International Institute for Applied Systems Analysis
IIASA www.iiasa.ac.at

IAMC 1.5°C Scenario Explorer hosted by IIASA

© IIASA and IAMC 2018

The scenario ensemble is protected by EU Sui generis database rights.

This Scenario Explorer presents an ensemble of quantitative, model-based climate change mitigation pathways underpinning the Special Report on Global Warming of 1.5°C (SR1.5) by the Intergovernmental Panel on Climate Change's (IPCC) 2018.

Copyright and License

The scenario ensemble is made publicly available to ensure reproducibility and transparency with respect to the scenario set that has been assessed in SR15. The Scenario Explorer allows for the re-use of scenario data by other research communities, under a derivative of the Creative Commons Attribution 4.0 License. Please read the guidance note and the license terms on the License page before downloading data or figures.

Background of the Scenario Explorer

As part of the IPCC's Special Report on Global Warming of 1.5°C (SR15), an assessment of quantitative, model-based climate change mitigation pathways was conducted. To support the assessment, the Integrated Assessment Modeling Consortium (IAMC) facilitated a coordinated and systematic community effort by inviting modelling teams to submit their available 1.5°C and related scenarios to a curated database. The compilation and assessment of the scenario ensemble was conducted by authors of the IPCC SR15, and the resource is hosted by the International Institute for Applied Systems Analysis (IIASA) as part of a cooperation agreement with Working Group III of the IPCC.

The scenario ensemble contains more than 400 emissions pathways with underlying socio-economic development, energy system transformations and land use change until the end of the century, submitted by over a dozen research teams from around the world. The criteria for submission included that the scenario is presented in a peer-reviewed article, which has been identified as an important measure of robustness.
Scenario Explorer: Multiple panels
Scenario Explorer: Documentation

The energy system in the four illustrative pathways

This workspace shows the transformation of the energy system towards no- and low-carbon fuels in the four illustrative pathways. It is based on Figure 2.15 in Chapter 2 of the SR1.5

LED - A pathway of low... S1 - Sustainability

1 scenario 9 variables 1 region 1 scenario 9 variables 1 region

Documentation and additional information

1 model
Primary Energy|Biomass
primary energy consumption of purpose-grown bioenergy crops, crop and forestry residue bioenergy, municipal solid waste bioenergy, traditional biomass (EJ/yr)

1 scenario
Primary Energy|Fossil|w/ CCS
Primary Energy|Fossil|w/o CCS
Primary Energy|Nuclear
Primary Energy|Geothermal
Primary Energy|Hydro
Primary Energy|Solar
Primary Energy|Wind
Primary Energy|Ocean
Scenario Explorer: Documentation

The energy system in the four illustrative pathways

LED - A pathway of low... S1 - Sustainability
1 scenario 9 variables 1 region

Documentation and additional information

SSP1-19

Storyline:
Sustainability – Taking the Green Road (Low challenges to mitigation and adaptation) The world shifts gradually, but pervasively, toward a more sustainable path, emphasizing more inclusive development that respects perceived environmental boundaries. Management of the global commons slowly improves, educational and health investments accelerate the demographic transition, and the emphasis on economic growth shifts toward a broader emphasis on human well-being. Driven by an
Jupyter Notebooks (e.g. Figure 2.4)

IPCC SR15 scenario assessment
Assessment of underlying drivers and assumptions

This notebook contains the assessment of underlying drivers and assumptions of the scenario ensemble in Section 2.3.1 and Figure 2.4 for the IPCC’s “Special Report on Global Warming of 1.5°C”.

The scenario data used in this analysis can be accessed and downloaded at https://data.ene.iiasa.ac.at/iamic-1.5c-explorer.

Load pyam package and other dependencies

```python
In [1]:
import pandas as pd
import numpy as np
import io
import yaml
import math
import matplotlib.pyplot as plt
plt.style.use('style_sr15.mplstyle')
%matplotlib inline
import pyam

from utils import boxplot_by_cat
```

Import scenario data, categorization and specifications files

The metadata file must have been generated from the notebook sr15_2_0_categories_indicators included in this repository. If the snapshot file has been updated, make sure that you rerun the categorization notebook.

```
In [2]:
srlp5 = pyam.IamDataFrame(data='..data/iamic15_scenario_data_world_r1.xlsx')
INFO:root:Reading '..data/iamic15_scenario_data_world_r1.xlsx'

In [3]:
srlp5.load_metadata('sr15_metadata_indicators.xlsx')
INFO:root:Importing metadata for 416 scenarios (for total of 416)

In [4]:
with open("sr15_specs.yaml", "r") as stream:
    specs = yaml.load(stream)
```

https://data.ene.iiasa.ac.at/sr15_scenario_analysis/
Introduction to the SR1.5 scenarios

A new scenario resource for integrated 1.5 °C research

Scenarios have supported assessments of the IPCC for decades. A new scenario ensemble and a suite of visualization and analysis tools is now made available alongside the IPCC 1.5 °C Special Report to improve transparency and re-use of scenario data across research communities.

Daniel Huppmann, Joeri Rogelj, Elmar Kriegler, Volker Krey and Keywan Riahi

Over the past two years, the IPCC has been preparing a Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global GHG emission pathways\(^1\) (SR1.5). This process was initiated at the explicit invitation of the 193 governments of the United Nations Framework Convention on Climate Change (UNFCCC) as part of the decisions taken in Paris in 2015\(^2\). During the first week of October in 2018 the resulting report, comprising more than 200 pages, was presented for approval by the IPCC plenary in Incheon, South Korea. The report assesses the state of scientific knowledge for sense that they are used to the fullest extent. To this end, the Integrated Assessment Modeling Consortium (IAMC) — the umbrella organization of modelling teams conducting global climate change mitigation analyses — facilitated a coordinated and systematic community effort implemented by the International Institute for Applied Systems Analysis (IIASA) and authors of IPCC SR1.5. The consolidated scenario data supporting the IPCC SR1.5 assessment has been published online as part of the ‘IAMC 1.5 °C Scenario Explorer hosted by IIASA’ (https://data.ene.iiasa.ac.at/iamc-1.5c-explorer\(^3\)), which ensures the reproducibility and resources to contribute their scenario data to the database can be found in Table 1. Scenarios were submitted from a diverse set of recent publications including multi-model comparison projects\(^4-8\) and single-model scenario studies\(^9-10\).

However, developing a useable scenario database requires more than simply porting diverse data from various sources into one large container. The literature on 1.5 °C and 2 °C pathways varies significantly in the amount and type of data that was published in figures and digital form, which severely limits comparability of pathway information across studies. Therefore, a

https://doi.org/10.1038/s41558-018-0317-4
In this context, an ensemble of opportunity refers to a serendipitous collection of scenario data from a variety of sources and studies. Here, we provide a list of good practice for analysing such ensembles, as well as some examples.

Don’t interpret the scenario ensemble as a statistical sample or in terms of likelihood/agreement in the literature. A number of scenarios show that limiting global warming to 1.5 °C can be achieved without the deployment of BECCS, while the majority of scenarios use it (Fig. 1c). This information by itself does not imply that reaching ambitious climate goals is less likely without BECCS — instead, it shows that pathways with and without BECCS exist for implementing the goals of the Paris Agreement, highlighting that different societal preferences and strategies can result in vastly different outcomes.

Don’t focus only on the medians, but consider the full range over the scenario set. Although it is often easier to communicate single numbers rather than ranges, the full breadth of indicators or trajectories within a scenario set carries important information about the available options (Fig. 1b–e).

Don’t cherry-pick individual scenarios to make general conclusions. Select an appropriate subset of scenarios instead, in such a way that differences or alternative developments between scenarios within one category can be highlighted (Fig. 1d).

Don’t over-interpret scenario results and don’t venture too far from the original research focus. All scenarios in this compilation analyse the emission pathways and the energy system transformation in mitigation pathways; comparing emissions and similar indicators is therefore a valid meta-analysis. In contrast, most scenario designs implicitly look for the least-cost solution with respect to mitigation efforts and are not designed to consider interregional fairness or burden-sharing methods. Regional GDP changes under mitigation policies from these scenarios thus provide little information about who will ultimately win or lose from climate action and is taking the meta-analysis outside of the application domain of these scenarios.

Don’t conclude that the absence of a particular scenario (necessarily) means that this scenario is not feasible or possible. The solution space in an ensemble of opportunity is not comprehensive. Scenarios might be ‘missing’ because no study asked a research question that would require such a scenario to be developed, or, even more banal, because such a scenario was published in the literature but not included in the ensemble for other reasons. Unavailable scenarios do not preclude them from being possible, unless a study specifically indicates that a particular scenario was attempted but could not be produced by a modelling framework (for example, limiting radiative forcing in 2100 to 1.9W m² under SSP3 socioeconomic assumptions¹,¹³).
Good practice guidelines

• Don’t interpret the scenario ensemble as a statistical sample or in terms of likelihood/agreement in the literature.

• Don’t focus only on the medians, but consider the full range over the scenario set.

• Don’t cherry-pick individual scenarios to make general conclusions.

• Don’t over-interpret scenario results and don’t venture too far from the original research focus.

• Don’t conclude that the absence of a particular scenario (necessarily) means that this scenario is not feasible or possible.
More information

- Public website: data.ene.iiasa.ac.at/iamc-1.5c-explorer
- Recommended citation of the scenario explorer and data
- High-level description of the scenario ensemble
 A new scenario resource for integrated 1.5 °C research.
 Nature Climate Change, 2018. doi: [10.1038/s41558-018-0317-4](https://doi.org/10.1038/s41558-018-0317-4)
- Open-source assessment notebooks for the SR15
 github.com/iiasa/ipcc_sr15_scenario_analysis/

Thank you!

Volker Krey
krey@iiasa.ac.at
Backup Slides
Different roles for visualization tools

From research insights to communication

(Bosetti, Riahi, Kriegler, Huppmann, et al…)

General public
Infographics
Focus on communicating key messages in an accessible way

Policymakers
Scenario Portal
Focus on selected insights form small set of scenarios

Researchers
Scenario Explorer
Comprehensive access to data, results and assumptions

Modeling experts
Increasing level of complexity guiding users towards better understanding of findings

Flexible tools for visualization & analysis
Flexible tools for visualization & analysis to assist researchers/modelers “finding the story” in the haystack

Simple & intuitive “points of entry”
Scenario Explorer replaces the current database infrastructure (e.g., AR5)

Scenario data repository with upload / download and simple visualization features

Developed since 2007 with dozens of databases (EMF, EU, IPCC, GEA, regional studies)

https://tntcat.iiasa.ac.at/AR5DB