Soil carbon crediting for smallholder agriculture: lessons from the field

Leslie Lipper Senior Environmental Economist Food and Agriculture Organization of the UN

- Poor soil fertility is a key constraint to agricultural productivity growth and thus food security/poverty reduction
- Increasing soil fertility is an important component of many developing country ag. development strategies (particularly Africa)
- Years of attempts to promote adoption of SLM have shown there are considerable barriers that have generally not yet been overcome

Importance of soil carbon to mitigation

IPCC 2007: 90% of technical mitigation potential from soil carbon sequestration

Four broad categories

- Cropland Management
- Grassland Management
- Management of Organic Soils
- Restoration of Degraded Lands
- Cropland Management includes:
 - Avoiding bare fallow, use of cover crops
 - Soil and water conservation structures
 - Tillage management (e.g. conservation agriculture
- Grassland Management includes:
 - Reduced fires
 - Seeding fodder grasses
 - Grazing management

MAP 8 Highly degraded croplands with soil carbon sequestration potential and high poverty rates

Other croplands with soil carbon gap

Non-study area

Comparing effects on average yields and carbon sequestration from adopting SLM

F O

Soil carbon sequestration relatively cheap form of mitigation...

But is it?

Number of years to reaching positive income flows Three Rivers Grasslands Carbon Credit Project, Qinghai China

Size of herd	Baseline net	NPV/HA over 20	No years to positive	No of years to positive
	income	years	cash flow	incremental net income
				compared to baseline
				net income
	(\$/ha/yr)	(\$/ha)	(number of years)	(number of years)
Small	14.42	118	5	10
Medium	25.21	191	1	4
Large	25.45	215	1	1
Source: Wilkes 2011				

SLM Adoption Costs and Barriers

- Up-front financing costs can be high, but onfarm benefits not realized until medium-long term
 - Local credit markets very thin
 - Local insurance options very limited
- Tenure Security & Management of Common-Pool Resources
- Limited Access to Information, e.g. Research & Extension
- Risk management and need for flexibility

Adoption Barriers: Up-Front Financing Costs

Source: FAO 2007

- Developing country agriculture has high soil carbon sequestration potential at low estimated costs (e.g. IPCC 2007; McKinsey 2009) However barriers to adoption not reflected in MACC and full cost accounting likely to be much higher
- Soil carbon sequestration generally low per hectare per year; accrues slowly over time (.1-2 tCO2 eq/yr)
- Low market value (AFOLU VERS at .10 USD/TCO2eq) of credits to lack of credibility; problems with permanence
- MRV is expensive: missing data to support activity based models; aggregation over large numbers/heterogenous conditions important
- Development of NAMA concept funding for developing country mitigation linked to national development goals and not necessarily linked to offsets increases importance of agriculture – lower transactions costs associated with lower certainty

Options for capturing synergies Linking mitigation finance to FS

Chicago Climate Exchange soil carbon crediting map

- In developing countries, soil carbon sequestration only makes sense where it has significant agricultural benefits;
- The scale attainable and early action characteristic of soil carbon are a great advantage – as are the important link to agricultural productivity and resilience;
- There are very significant barriers to adopting agricultural practices that result in higher costs than generally assumed – these costs can be shared with agricultural development financing/efforts
- Low Cton/ha, low prices, high uncertainty, leads to high transactions costs for crediting at high levels of confidence
- Public sector funding for soil carbon sequestration to build information and institutions needed for crediting and that link to agricultural financing channels is important to

Thank you!!