

Outline of the ForFITS model

Pierpaolo Cazzola UNECE Transport Division

Transport and NAMAs –what progress? Doha, 29 November 2012

Contents

Background: the UNDA project

ForFITS model

- Model requirements
- Simplified structure
- Summary of key parameters (inputs, outputs)
- Model development
- Partners

Some useful links

UNDA project

Characteristics, activities, objectives and expected achievements

Characteristics

- Duration: 3 years (January 2011 December 2013)
- Leading agency: UN ECE (Economic Commission for Europe)
- Implementing entities: ECA, ECLAC, ESCAP & ESCWA (other UN Regional Commissions)
- Main focus is on capacity building

Activities, objectives and expected achievements

- (a) <u>Review</u> of models looking at transport activity, energy consumption and CO₂ emissions
- (b) Development of a <u>methodology</u> for a tool analyzing CO₂ emissions mitigation policies in the transport sector (ForFITS model "For Future Inland transport Systems") Review and methodology were developed, presented and discussed in a <u>meeting</u> (held in April 2012), and are now available on-line on the UNECE web site
- (c) Development of the tool, validation and benchmarking Currently ongoing (model prototype expected by the end of the year 2012)
- (d) Preparation of training materials (user manual) in all official UN languages and undertaking of pilot projects (e.g. a city per region making a detailed assessment and capacity-building effort) - expected for 1st half of 2013
- (e) Capacity-building and training workshops for government policymakers and industry stakeholders to raise awareness and provide skills for the use of the model 2nd half of 2013

ForFITS Model requirements

(1)

Key requirements

- Allow the estimation/assessment of emissions in transport
- Allow the evaluation of transport policies for CO₂ mitigation

Convert information on transport activity into
fuel consumption and CO₂ emission
estimates considering the influence of the
demographic and socio-economic context,
including policy inputs

- Be developed as a software tool
- Be freely available for users (e.g. national and local governments, general public)
- Be developed between 2011 and 2013

Sectoral model (focused on inland transport only): we do not expect it to target the evaluation of overall effects on the economic growth

This tool can be very helpful for the preparation of transport-related NAMAs

ForFITS

- Vehicles classified by... service (passenger, freight), mode, class & powertrain
- Fuels classified by blend and pathway
- Different areas (e.g. urban or not) in each region/country
- Congestion, speed, travel per vehicle may be included
- Imported used vehicles to be considered separately from (exogenous inputs or link to GDP per capita)

Energy content of fuels,

emission factors (upstream,

Fuel 1

ForFITS Key inputs and outputs

The model does require a substantial amount of data, in order to

characterize the transport system in the base year •

Inputs (projections, policies, technologies)

- define the economic system and the policy inputs in the future •
- characterize technologies in analyzed time period (current, short term, long term)

inputs (projections, policies, technologies)		ulpuls
 GDP, population, urbanization 	-	Full information
 Discount rate 		(by mode, class,
 Fuel prices (costs and taxes) 	-	Shares of power
 Fuel mandates 	-	Share of fuel use
 Vehicle characteristics 	—	Transport activit
 fuel consumption, powertrain shares, taxation 	—	Tonnes lifted, fro
 Average scrappage age (for built-in scrappage function) 	—	Fuel use
 Price elasticities of vehicle travel 	—	CO ₂ emissions
 Average vehicle loads 	-	Total cost of veh
 Modal split (for public transport & freight) 	—	Total governme
 Economic development characteristics 		
 passenger: transit-oriented or not 		
 evolution of the economic system (freight) 		
 Technological improvement and costs by powertrain 		
(with choice module)		
 Second hand imports, eventually network extension 		

.

- on vehicles powertrain and age)
- rtrain technology used
- ed
- ty (pkm, tkm, vkm, time)
- eight transport volume (t)
- nicle and fuel purchase
- nt revenues from taxes/cost of subsidies

ForFITS Model development

Current status

- Review of similar model already carried out
- Detailed structure and equations already developed (methodological paper)
- We are developing the model in Vensim

Realistic near-term expectations

- Our target is to have a prototype version (stock model, fuel consumption and emission calculations, exogenous inputs for powertrains) ready by the end of 2012
- An evolved prototype (updated demand generation, choice modules for powertrains possibly - and fuels, better policy input interfaces) expected for March 2013

Future/parallel steps

We need to:

- develop the documentation, together with the second prototype (early 2013)
- use the model in pilot projects (spring 2013)
- raise awareness about the availability of this tool
- prepare capacity building and training sessions (second half of 2013)

We are looking for partners

Our ideal partner for the pilot projects

- someone willing to understand the transport system he is concerned about (typically a geographical region), its impacts in terms of energy consumption and CO₂ emissions
- someone having access to a sufficient amount of statistical information
- someone having some degree of specific competence (transport, transport policies, energy policies, environmental policies)
- someone having sufficient financial means to support his/her ambitions
- someone from...
 - a national administration and/ore a local government
 - an Inter-Governmental Organization
 - a Non-Governmental Organization
 - an Academic institution and/or a consulting company
 - the industry sector (company/corporation, industry association)

ForFITS How it looks Vehicle stock model

Vensim:ForFITS 0.mdl Var:annual regional pkm by area[region,area]	BU Repair Lands Avel Typesterie & Bugs. 1864	
File Edit View Layout Model Tools Windows Help		<u>_[0]_</u>
New Open Seve Print Cut Copy Paste Simulation re Model Model Seve Print Cut Copy Paste Sim Sim	ts file name by the second sec	l
🐎 🔒 🥙 🗛 🗔 🔧 🐗 🗛 👒 🖧 [J 📚 🔨 🔟 🎮 🔼	4
Causes Lock Move/Sizs Variable Box Arrow Rate Model Shadow Merge O	t Comment Unhide Hide Delete iquations Mode	
Crime STEP	cost of driving per vkm by vehicle class in earlier ine step Cost of driving per vkm by vehicle class (base year) Cost of fuel per vkm by vehicle class (base year) cost of fuel per vkm by vehicle class (base year) cost of fuel per vkm by year) cost of fuel per vkm by powertrain (base year) cost of fuel per unit energy, fuel umption per vkm (stock), and vkm by powertrain (base year) cost of fuel per unit energy by powertrain (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by powertrain and fuel blend (base year) cost of fuel per unit energy by fuel blend (base year)	Cost of driving per vkm by vehicle class Cost of the per roduct of cost of fuel per vkm and vkm by powertrain cost of fuel per vkm tock), and vkm by powertrain cost of fuel per unit energy by powertrain Cost of fuel per unit energy by powertrain Cost of fuel per unit energy by fuel blend

ForFITS How it looks

Aggregated outputs, transport activity

ForFITS How it looks

Excel user inputs interface

J 7 . C -	-						-						Fo	orFITS Inp	puts 1.	xls [Compatibilit	y Mode]	- Micro	osoft Exce	1	-															0	
Home	Insert	Page	e Layout	Form	• A A	Data Revi	iew Vi	ew	Wrap Text	Gene	eral	*		t i		Percent 2	No	rmal		Bad		Good		Neu	utral	-	+	•		Σ Auto	oSum *	27	A		2	0 -	ē
ste	Painter	BI	<u>u</u> - E	3 - 1 3	• <u>A</u> •		I (F ()		Merge & Center	\$	- %,	€.0 .00 ●.€ 00.	Conditio	onal Fo	rmat	Calculation	Ch	eck Cel		Explanat	tory	Input	0	Link	ed Cell	*	Inser	t Delet	e Format	E Fill *	r •	Sort &	Find &				
Clipboard	ī,		Font		15	e .	Align	ment	1	ž.	Numbe	- G	1 Of Match	ing us i	ubic		1007-		Style	5								Cells		-	Edi	ting	Sciett				
A144	*	(=	f _x																																		
A B USER INPUTS	c		D	E	F G	н і	J	к	L M N	0	P	Q F	S	T	U	V W S	Y	Z	AA	AB AC	D AD	AE	AF	AG A	H AI	AJ	AK	AL 4	IM AN	AO A	ip Ai	Q AR	AS	AT	AU	AV P	AW
BASE TEAR AND FIN	AL TEAR																																				
		TEAR	B	ASE FII 2010	NAL 2040																																
POPULATION AND G	DP																																				
POPULATION (PA	mpla)		2	ARFA																																	
		SERVICE PASSENGER		ii 50758944 1	4316625	iv	Check OK																														
GDP (current US	D. PPP)	FREIGHT				65075569																															
				ABEA																																	
		PASSENGER	1	1.99E+12	2.29E+11	2.22E+12	OK																														
JEHICLE STOCK			-																																		
NUMBER OF ACTI Nate: far pipeliner, er	ohm3transporte	5 (VEHICLE S odir conrdorod a	TOCK) (vehi ar a 'vehicle'. Au	i cles) s a result, the	input required f	arpipolinos carrospan	dr to the annual v	olume trans	rpurted, expressed in cubic m	strer.																											
			2				_		iife a NONUBB	N)	-		_	-					1	info a	allaroar)	_		_	_												
S	ERVICE	MODE	1	EHICLE C	C	D E	F		VEHICLE CLA A B	55 C	D	E F		YE A	CHICLE C	CLASS C D	E	F		VEHI A	B	s c	D	E F	Check												
P	ASSENGER	TWO WHEELE THREE WHEEL	ERS	1474200 2496	91366.1 772200 312	0 0 0 0	0 0		625800 32 704	9.93 7800 88	0 0	0	0		0	0 0	0	0 0	0		0	0		0	0 0K												
		LDVS VESSELS		10333440 616200	9185280 3444	480 0 54 0 0 100 0 5	4288 0 40 0		4066560 361 173800	0 0	0 0	3712	0		0	0 0	0	0 0	0		0	0	0	0	0 0K 0 0K												
		AIR		100	1760 1330	.33 0	1530 515 0 0		38	0 2	0000	55	35		0		0	0 0	0		0	0	0 0	0	0 0K 0 0K												
FF	EIGHT	PIPELINES NMT TWO WHEELE	IRS	0	0	0 0	0 0		0	0	0 0	0	0		0		0	0 0	0	2404	4240	0	0	0	0K 0K												
		THREE WHEEL	LERS	0	0	0 0	0 0		0	0	0 0	0	0		0	0 0	0	0 0	0	2400	40 0000	0	0	0	0 0K 0 0K												
		LARGEROAD	Þ	0	0	0 0	0 0		0	0	0 0	0	0		0	0 0	0	0 0	0	1	2800 1400 60	0	130000	0	0 0K												
_		AIR PIPELINES	-	0	0	0 0	0 0		0	0	0 0	0	0		0	0 0	0	0 0	0	4.68	60 E+10 1E+	0	0 0	0	0 бк 0 ок												
POWERTRAIN GR	OUP SHARES	S IN EACH VE	HICLE CLAS	S (VEHICI	E STOCK) (>	af vahiclar in th	e same vehicl	le clarr)																													
			ť.	AREA	SIN GROUP				AREA	SROUP				AF	REA	AIN SROUP				ABE/	A FRTRAIN 6	ROUP			_												
				Gi	SOLIN		DIESELCI		GASO	LIN		DIESE	LCI		G	SASOLIN		DIESELCI	r.		GASOLI	IN		DIES	ELCI												
SERVICE	ODE	VEHICLE C	ILASS C	ASOLIN EL	ECTRIC METHA		LCI ELECTRIC HYBRID	ELECTRIC	GASOLIN ELECT Chark EPIIOE HYBR	E- TRIC METHA		DIESEL CI ELECT		GA Charle EP	SOLIN E	PHOE- LECTRIC METHANE	DIESEL	ICE- CI ELECTRIC HYBRID	ELECTRIC	GASO	E PIICE	IC METHANE	LPGPUCE	DIESEL CI ELEC		herk											
PASSENGER TV	VO WHEELERS	A B		100× 100×	0× 0× 0× 0×	0× 0× 0× 0×	: 0% : 0%	0% 0%	OK 100% 0: OK 100% 0:	02 02	0% 0%	0% 0; 0% 0;	0× 0×	бк бк	100× 100×	0 X0 X0 0X 0X 0	x 0x x 0x	0% 0%	0% N	avahic. 100 avahic. 100	N0 NN	0× 0×	0% 0%	0× 0 0× 0	t x0 x t x0 x	lavehic. Iavehic.											
		C D E		100% 100% 100%	0X 0X 0X 0X 0X 0X	02 02 02 02 02 02	: 0X : 0X : 0X	0X 0X 0X	Havehic. 100% 0: Havehic. 100% 0: Havehic. 100% 0:	(02 (02 (02	0% 0% 0%	0% 0; 0% 0; 0% 0;	0% 0%	Navohic. Navohic. Navohic.	100× 100× 100×	0X 0X 0 0X 0X 0 0X 0X 0	K 02 K 02 K 02	0× 0× 0×	02 N 02 N	ovahic. 100 ovahic. 100 ovahic. 100	2 02 2 02	0% 0% 0%	0% 0% 0%	0% 0 0% 0 0% 0	x 0x 1 x 0 x 1 x 0 x 1	la vohic. la vohic. la vohic.											
Th	IREE WHEELERS	F A	-	100%	0% 0% 0% 0%	02 02	0×	0%	Havehic. 100% 0: OK 100% 0:	02 02	0%	02 00	0%	Navehic. OK	100× 100×	0 X0 X0 0 X0 X0	× 0×	0%	0% N	avohic. 100 avohic. 100	20 0X	0%	0%	0% 0 0% 0	x 0 x 1 x x 0 x 1 x x 0 x 1	tavohic. tavohic.											
		C D		100%	0% 0% 0% 0%	0% 0%	02	0% 0%	Navehic. 100% 0: Navehic. 100% 0:	6 02 6 02 6 02	0% 0%	02 0; 02 0; 02 0;	0% 0%	Navohic. Navohic.	100× 100× 100×	0X 0X 0 0X 0X 0 0X 0X 0	K 0X K 0X	0% 0%	02 N 02 N	avehic. 100 avehic. 100 avehic. 100	2 02 2 02	02	0% 0%	0% 0 0% 0	x 0 x 1 x 0 x 1 x 0 x 1 x 0 x 1	lavehic. lavehic. lavehic.											
		F		100%	0% 0% 0% 0%	02 02 02	02 02	0%	Havehic. 100% 0: Havehic. 100% 0:	02	0% 0%	02 0; 02 0; 02 0;	0× 0×	Havohic. Havohic.	100% 100%	02 02 0 02 02 0 12 02 0	< 02 < 02 < 02	0× 0×	02 1	avehic. 100 avehic. 100	2 02 2 02	0%	0% 0%	0% 0 0% 0	1 X0 X 1 X0 X	lavohic. lavohic.											
		B		45%	1.2× 0× 1.4× 0×	0% 54 0% 61	X 0X	0× 0×	ОК 45½ 15 ОК 37½ 15	0× 0×	0% 0%	54% 0: 62% 0:	0× 0×	бк	45× 37×	1% 0% 0 1% 0% 0	4 54% 4 62%	0× 0×	0% N	avohic. 45: avohic. 37:	x 1x x 1z	0× 0×	0% 0%	54% 0 62% 0	х 0 х 1 х 0 х 1	ta vohic. ta vohic.											
		D E F		45%	1.2% 0% 1.6% 0% 1.6% 0%	0% 54: 0% 74: 0% 74:	X 0X X 0X	0% 0% 0%	Navehic. 45% 15 OK 28% 15 Navehic. 28% 15	0% 0% 0%	0% 0% 0%	54% 0: 71% 0: 71% 0:	0% 0% 0%	Na vohie. OK Na vohie.	45% 28% 28%	1% 0% 0 1% 0% 0 1% 0% 0	4 54% 4 71%	0× 0× 0×	0% N 0% N	ovehic. 45: ovehic. 28: ovehic. 28:	x 1x x 1x x 1x	0%	0% 0% 0%	54% 0 71% 0 71% 0	x 0 x 1 x 0 x 1 x 0 x 1	tavehic. tavehic. tavehic.											
LA	RGEROAD	A B		1.8%	2.3% 0% 2.3% 0%	0× 96: 0× 96:	X 0X	0% 0%	ОК 2X 15 ОК 2X 15	0% 0%	0% 0%	98% 0: 98% 0:	0% 0%	бк	2% 2%	12 02 0 12 02 0	x 98% x 98%	0× 0×	0% 0%	avehic. 27 avehic. 27	4 12 4 12	0× 0×	0% 0%	0 %89 0 %89	× 0×	ta vohic. ta vohic.											
		DE		1.8%	2.3% 0% 2.3% 0%	0% 96: 0% 96: 0% 96:	2 02 2 02 2 02	0X 0X 0X	0K 22 15 Navehic. 22 15 0K 22 15	02	0% 0%	98% 0: 98% 0: 98% 0:	0× 0× 0×	Havehic. OK	2%	12 02 0 12 02 0 12 02 0	< 98X < 98X < 98X	0× 0×	02 02 02	avohic. 27 avohic. 27 avohic. 27	4 12 4 12 4 12	02	0% 0%	982 0 982 0 982 0	2 02 7 02 2 02	ta vohic. ta vohic.											
Bi	411.	F A B		1.8%	2.3% 0%	02 96:	X. 0%	0% 100%	Na vehic. 2% 15 OK OK	0%	0%	98% 0: 0%	0% 100%	Navohic. Navohic.	2%	1% 0% 0	× 98% × 0%	0%	0% N 100% N	avehia. 27 avehia.	<u> 18</u>	0%	0%	98% 0 0%	× 0× 1 100× 1	ta vehic. ta vehic.											
+ +		C D				50:	× ×	50% 50%	OK Na vehic.			50% 50%	50%	OK Na vehic.			50% 50%		50% N	a vehic. a vehic.				50% 50%	50×	ta vohic. ta vohic.											
FREIGHT	VO WHEELERS	F		1002	02 02	02	e 	100× 100×	OK OK Namahir 100% O		02	0% 0%	100% 100%	OK OK	10.0%	02 02 0	0% 0%	82	100% N 100% N	avehic. avehic.	12 PY	07	02	0% 0%	100× 1 100× 1	ta vohic. ta vohic.											
User i	nputs (B/	ASE Y)	Historia	cal sales	inputs (t	ime) / Ma	ain user inj	puts (o	over time) 🖉 D	etailed	user inpu	ts (time)	Inputs	(BASE)	Y) (Inputs (time de	penden	t) 🦄		•		~~~		<i></i> •				- 11	10	and the second							•

For more information...

UNDA project page

http://www.unece.org/trans/theme_forfits.html

Useful links

Review on statistics, mitigation polices, and modelling tools

<u>http://www.unece.org/fileadmin/DAM/trans/doc/themes/2012 - UNECE -</u> <u>Global Status Report</u> October 2012 - final version.pdf

Methodology

<u>http://www.unece.org/fileadmin/DAM/trans/doc/themes/2012 - UNECE -</u> <u>Draft Concept document on ForFITS.pdf</u>

- International Expert Meeting

http://www.unece.org/?id=29350

Contact details

pierpaolo.cazzola@unece.org

Annexed slides (1)

ASIF: Activity, Structure, Intensity, Fuel consumption

Based on Laspeyres identities

$$F = \sum_{i} F_{i} = A \sum_{i} \left(\frac{A_{i}}{A}\right) \left(\frac{F_{i}}{A_{i}}\right) = A \sum_{i} S_{i} I_{i} = F$$

total fuel use F

Α overall transport activity (expressed in vkm)

- F_i fuel used by vehicles with a given set of characteristics (in the vehicle class i)
- $A_i/A = S_i$ sectoral structure (expressed by shares of vkm by vehicle class)
- $F_i/A_i = I_i$ energy intensity, i.e. the average fuel consumption per vkm by vehicle class
- The same methodological approach can be used to evaluate emissions derived from fuel consumption and with several energy carriers...

$$E = \sum_{i} E_{i} = A \sum_{i} \left(\frac{A_{i}}{A}\right) \left(\frac{F_{i}}{A_{i}}\right) \left(\frac{F_{ij}}{F_{i}}\right) \left(\frac{E_{ij}}{F_{ij}}\right) = A \sum_{i} S_{i} I_{i} E F_{ij} = E$$

- Ε fuel-based emissions (e.g. for CO_2 , the most relevant GHG in transport) E_i
 - fuel-based emissions due to the the vehicle class *i*
 - fuel *j* used in the vehicle class *i*
- F_{ij} EF_{ii} emission factor of the fuel (energy carrier) *j* used in the vehicle class *i*

Multinomial logit (case of powertrain selection)

It is based on the maximization of consumer utility

 in this case maximization of savings derived from the selection of one powertrain option with respect to the others

It requires the definition of the characteristics of all different options (the powertrains groups in each vehicle class, in this case) in order to characterize the utility of the individuals that have to select one of the choices

- Vehicle fuel consumption
- Vehicle and fuel prices including costs, margins and tax rates
- Discount rates

Logit functions also need information on average vehicle travel (km/year)

 For vehicles with low technology shares (emerging technologies) the mileage should reflect likelihood that early adopters of more capital-intensive modes actually tend to travel more than average

Learning curves (e.g. reflecting technology cost reduction as cumulative production increases) can be incorporated

Similar considerations can be extended to the logit approach for fuel selection (lowest costs first...)