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World abatement of energy-related CO,
emissions in the 450 ppm Scenario
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Steady Growth of Renewables
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Renewables 50-75% by 2050
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Renewables provide from almost half to three
quarters of the global electricity mix in 2050

IEA Energy Technology Perspectives 2010



Growth of Renewables in IEA
Blue Scenario

B Biomass and waste

B Ocean Solar CSP B Wind

B Geothermal Solar PV B Hydro

IEA Energy Technology Perspectives 2010
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Imperial College

18 research networks to enable internal cross-departmental communication and provide
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The Complexity of Biomass Conversion

Oil Crops
(Rape, Sunflower, Soya etc.)
Waste Oils, Animal Fats

Sugar and Starch Crops

Lignocellulosic Biomass
(Wood, Straw, Energy Crop,
MSW, etc.)

Biodegradable MSW,
Sewage Sludge, Manure, Wet
Wastes (Farm and Food Wastes)
Macroalgae

Photosynthetic

Microorganisms,
e.g. Microalgae and Bacteria

(Biomass Upgrading®) +
Combustion

Transesterification
or Hydrogenation

(Hydrolysis) + Fermentation™
or Microbial Processing

Gasification
(+ Secondary Process)*

Pyrolysis®

(+ Secondary Process)

Anaerobic Digestion
(+ Biogas Upgrading)

Other Biological /
Chemical Routes

Bio-Photochemical Routes

Sosoeossaas

Biodiesel*

Ethanol*, Butanols,
Hydrocarbons

Syndiesel / Renewable
Diesel*

Methanol, Ethanol,
Alcohols

Other Fuels and Fuel
Additives

Biomethane*

DME, Hydrogen
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Biofuels
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Low cost and rapidly deployable alternative for transportation fuels
Modest power efficiency — land use issues

Current advanced biofuel development

Use of regionally appropriate waste streams

can address land-use concerns

Biomass + CCS can lead to negative carbon emissions ]

Source: Paul Alivisatos, Lawrence Berkeley National Lab
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Biofuels — The Four Generatlons

* First Generation
— Fermentation of sugars and starches ==
— Alcohols from wheat, corn, sugar beet...
— Biodiesel from olls and fats by transesterification
* Second Generation \

— Non-food crop cellulosic feedstocks
- Waste, stalks, corn, wood, energy crops (eg Miscanthus) Il

— Biomass-to-liquids using Fischer-Tropsch etc
* FT diesel, biomethanol, DME, biohydrogen
— Cellulosic ethanol and myco-diesel using
Gliocladium Roseum fungus

15
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Biofuels — The Four Generations

 Third Generation

— Biofuel from algae — ollgae
« Up to 30x more energy per acre than land crops

« Only 15,000 sqg miles (1/7% corn land) to replace all
US petroleum fuels

« Ethanol direct production from algae (Algenol)

* Fourth Generation
— Thermochemical — pyrolysis
— Solar-to-fuel: photosynthetic algae + flue gases

— Genetic manipulation of microorganisms to
secrete hydrocarbons 16



Maturity of Renewable Energy Technologies

Maturity of
Technology
compared to
2050 Target

Biomass for Fuels
and Power/Heat
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>
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Target
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Biomass Conversion —The Challenges

Increase land productivity for energy and food crops

Multi-functional land and water use — integration of
bioenergy with agriculture and forestry

Improved product diversification from lignocellulosics,
particularly for high energy density air transport fuels
— Do not compete directly with food production

— Can be bred specifically for energy purposes with high land
utilisation

— Can be harvested as residues from crop production
— Allow the integration of waste management, local symbiosis

18



Biomass Conversion —The Challenges

Algal lipids for diesel, jet fuels + other high value
products from CO,, H,O and sunlight = lower land use

— Grow in brackish water, land unsuited to cultivation, industrial
waste water

— Operate in dark, metabolise sugars
— Tune to specific products

Gasification to syngas and fuels (alcohols, syndiesel)
+CCS

Lower cost H,, CH, and SNG from biomass
Cost reduction from $10-30/GJ to $12-15/GJ by 2035

Improvements in efficiency of IGCC biomass power
plants cf traditional steam turbines + add CCS

19



Biomass Conversion —The Challenges

Pyrolysis and hydrothermal oils as low-cost transportable
olls for heating or CHP or feedstock for upgrading

Optimise biogas production by anaerobic digestion from
waste streams and upgrading to biomethane for
transport, heat and power — ability to combine waste
streams including agriculture — improved upgrading +
reduced costs required

Coupling fermentation with concentrated CO, streams or
IGCC with CCS for CO, neutral or negative fuels.
Requires optimisation of biomass selection, feedstock
supply system, conversion to a second energy carrier
and integration of this carrier into future energy systems.

Improving modest power efficiency
Efficient and integrated use of waste



Pyrolysis

Pyrolysis is the rapid heating of fuels such as
wood or coal in an inert atmosphere

The main aim of pyrolysis is to produce pyrolitic
oll (Bio oil)- a liquid mixture of hydrocarbons

Energy conversion efficiency ~75%; could get to
80%
Other products include gases and char

An interesting area of research is the use of
wastes (plastics, waste wood, crop residues) to
produce fuels

Source: Paul Fennell, Imperial College London



Why Produce Bio-oil from Residues / Wastes?

« Bulk density of many biomasses between 200 and 700 kg / m3
and only 2 — 7 MJ / dm3 (many approx 5).

« Heating value of bio-oil ~17 MJ / kg ~ 20 MJ / dm?3

« Heating value still low in comparison with standard diesel (~
40 MJ / dm?3)

« A significant issue in the use of biomasses is transport and
logistics — getting the biomass from the field to the point of use

« Potential (after upgrading) to mix with hydrocarbon-based
fuels — Current global demand 4,200 Million tonnes / year?.

(4) Movable blomass generaton Thunderblrd )
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Decentralised Use of Bio-Oll

* For large scale biomass / waste processing, the first
step is to convert biomass into a transportable
product...

« The pyrolysis plants can be located anywhere, because
they can be economically built on a reasonably small

scale.
« A stand-alone central gasifier could then be used.

Source: Paul Fennell, Imperial College London



Biomass Conversion —The Challenges

Pyrolysis and hydrothermal oils as low-cost transportable
olls for heating or CHP or feedstock for upgrading

Optimise biogas production by anaerobic digestion from
waste streams and upgrading to biomethane for
transport, heat and power — ability to combine waste
streams including agriculture — improved upgrading +
reduced costs required

Coupling fermentation with concentrated CO, streams or
IGCC with CCS for CO, neutral or negative fuels.
Requires optimisation of biomass selection, feedstock
supply system, conversion to a second energy carrier
and integration of this carrier into future energy systems.

Improving modest power efficiency
Efficient and integrated use of waste
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Solar — the long-term energy solution
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The evolution of Solar Technology
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Maturity of Renewable Energy Technologies

Maturity of
Technology
compared to
2050 Target

Solar PV ®

#* Solar Fuels

y

—

Solar Thermal, CSP

2050
Target
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Solar Network

* Largest solar energy research program in UK

» Over 100 research staff and students in 8 departments

» Supported by ~ £5m funding

 Partnerships through EPSRC, TSB & EU funded projects,

— including 10 projects > £1m each.

» Over 20 industrial partners with over £3m of direct

industrial funding N K'u.iziaArlti_é
1
= ners include: dMERCK
« _ SolarPress ' (=24 SOLVAY
A W Solar Power For Everyone
! bp T INNCVATICNS .
. . ®
QuantaSel

Network Leaders: Prof. James Durrant & Dr Ned Ekins-Daukes
Website: www.imperial.ac.uk/solar
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Solar Network: Research Areas

Photovoltaic Technologies B‘——!
— Organic & dye sensitised photovoltaic cells

— New concepts for high efficiency photovoltaic

devices

Solar Fuels: The Imperial Artificial Leaf initiative
— Solar hydrogen generation

— CO,reduction

Molecular Processes of Photosynthesis

PV systems and environmental analysis



http://ess14.sc.ic.ac.uk/~q_pv/diagram.html

Solar Thermal

(Similar in scope to a Natural Gas\
Plant
* Issues with water, transmission,
intermittency
» Developments in Australia, Qatar,
India, Mexico, North Africa, Spain, US
* Challenges:
* Higher temperatures e.g. Desertec — German-led
* Dry-cooling of steam cycle? project targets15% of Europe’s
\ » Dust-resistant mirrors j Energy needs by 2019 start-up
Source: Paul Alivisatos, Lawrence Berkeley National Lab
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Solar Thermal Opportunities

Active Solar Buildings — thermal collectors + PVs or
hybrids built into all components of roof and
facades...covers all energy demands for water heating
and space conditioning

Heating demanding climates: combined evacuated
glazing and solar units for heating and improved
Insulation

Cooling demanding climates: cool (white) roofs, heat-
dissipation by ground and water heat sinks, solar control
to allow penetration of lighting but not thermal
components.

Improved thermal storage in building materials

Improved distribution of absorbed solar heat around
buildings

36



Solar Thermal Challenges

« Electricity production without intermediate
thermodynamic cycle
— Thermoelectric
— Thermoionic
— Magnetohydrodynamic
— Alkali-metal methods

37



CSP Challenges

Proven at utility scale but still advances required

Cost reductions through mass production and
economies of scale

Improved solar-to-electricity efficiency

— Higher collector temperatures
— So alternatives to oil as heat transfer fluid (water or molten salts)

Higher efficiencies for central-receiver systems
Peak efficiencies targeted to double to say 35%

Improved trough technologies
— Solar-selective surfaces

— Improved receiver/absorber designs which increase solar
intensity at focus

Space solar power
— beamed via microwaves to receiving antennae 38



Solar PV
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Rest of the world (ROW)
Bvus.
E ..............................................
B Japan

Total Installed Capacity (Gigawatts)

1992 19932 1994 1995 1996 1997 1998 1995 2000 2001 2002 2003 2004 2005 2006 2007

( 2010 global installation >40 GW \
* Module costs falling steadily
 2010: Thin film $0.75/W, Si $1.25/W
» US DoE target for installed cost is $1/W
» Rapid technology developments
» Monocrystalline Si (Sunpower) 12.5% efficiency
kSpectrolab triple junction PV world record 41.6°/y

Source: Paul Alivisatos, Lawrence Berkeley National Lab
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Recent Boom in PV Growth
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Solar PV Roadmap Targets
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If sound policies are put in place, PV can provide 5% of global

electricity generation in 2030, 11% in 2050 © ca/oeco 2010



PV Learning/Cost Curve

PV learning curve
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PV Challenges

« Continuation of rapid improvements in performance and
decreases in cost

* Improvements in
— Cell efficiency, stability and lifetime
— Module productivity and manufacturing
— Environmental sustainability
— Applicability, standardisation and harmonisation

« Emerging cells for 2030 and beyond
— Multiple junction
— Polycrystalline thin films
— Crystalline silicon < 100 um

43



PV Challenges

High Risk Cells — potential to increase max efficiency
substantially

— Organic solar cells

— Biomimetic devices

— Quantum dot designs

Balance of Systems
— Inverters

— Storage

— Charge Controllers
— System Structures
— Energy Network



Solar to Fuels

* Renewable fuel
synthesis

« Storage of solar energy
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The Imperial Artificial Leaf Project

= : Crossing Cutting Themes:
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http://www3.imperial.ac.uk/energyfutureslab/research/grandchallenges/artificialleaf

Imperial’'s Solar to Hydrogen Programme
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This strange machine is a bioreactor. Scientists at Imperial College London
created it to make hydrogen without burning fossil fuels...

Image: Imperial College London

energy futures lab



Imperial College
London

The green stuff inside is algae,
tiny plants that naturally produce
small amounts of hydrogen gas.

Image: Imperial College London

yd energy futures lab
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Types of Device

Generic issues means different devices
can be considered throughout research

Batteries: high energy density, but low
power density

High resistance at high discharge rates  reactive armour
- kinetics of redox process LE03

Capacitors: offer a limited energy
density with a high power density,

Energy only stored as charge on
electrodes.

Supercapacitors: avoid solid state
redox reactions & half-way-house
between batteries & capacitors

Energy density 5Wh/kg, Power density |, -
02-5 kW/kg 1E05 1E04 1E03 1E02 1E01 1E+00 1.E01 1.E%

Energy Density (Wh/kg) Portable
electronic

Hybridcapacitors: combined batteries s
and supercapacitors

Load-levelling

1.E+02 -

1.E+01 -

Supercapacitors

1.E+00 -

Power Density (kW/kg)

1.E01
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Maturity of Renewable Energy Technologies

Maturity of
Technology
compared to
2050 Target

Energy Storage, Devic;

g Energy Storage, Transport

®" Energy Storage, Grid Scale
s >

2050
Target
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Batteries, Storage and Electric Vehicles

* The options

— Hybrid Vehicles
« Multi-fuel: Hydrogen/Ammonia/LPG/Battery

— Plug-in Hybrids
— Electric Battery Vehicles
— Fuel Cell Vehicles

63



SRZero — Imperial electric sports car
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Energy Usage = 150 Wh/km cf efficient ICE vehicle @ 50mph = 550 Wh/km
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Integrating Energy Storage with Fabrication

Many energy-depended applications require reduced weight/volume to yield
Improved performance

Energy storage device sector well established and forecast to grow rapidly in the

future.
Improvements in terms of power & energy density are not keeping pace with

demand.
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ICL Studies — Device Concept

lon permeable

Separator (Insulator) Current collector
(Electrode)

Electrolyte

Conventional
Supercapacitor

Electrolyte: Nanostructured
bicontinuous polymer

Insulator;
Glass Fibre Mat

Electrodes: Activated
Carbon Fibre Mat

Structural Power
Supercapacitor



“Cars of the Future to Power
Themselves”

Nanocomposites formed into chassis, doors, which store electricity:
Dr Emile Greenhalgh, Professor Alexander Bismarck, Professor Milo Shaffer,

Imperial College London 67



Challenges for Energy Storage at Grid Scale

No one storage technigue meets all requirements
— need a portfolio

Lifetime of devices vs performance is key

— Lifetime of Li-ion batteries increased by operating over
only a fraction of full duty cycle... what fraction optimal?

— Control strategy crucial

3-6 hrs storage time optimal for both bulk and
distributed storage; limits search for solutions

Low cost solutions that decouple power and
energy required as energy increases

Requires new breakthrough solutions 0



EPSRC funded grand challenge in energy
storage for low Carbon Grids

£5.5M 5 year programme funded by EPSRC, starting Oct 1t 2012.

Imperial College

University

The

U] |
W Durham

5 L S UNIVERSITY OF LEE[;%S
London L..I'Ii‘-.'L'T“.‘-ii[‘_g.' % Sheffield.
CARDIFF 1 UNIVERSITY OF (XX
&¥ CAMBRIDGE ]
PRIFYSGOL
CARDY® -

Univ$rsity
(¢}
St Andrews

» Modelling and analysis of network, control and storage technologies as a ‘system’

» Research into four innovative storage technologies

» We wish to engage with others interested in this area from an end user, developer,
and policy perspective.
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Sodium - lon Batteries

* Low cost (cheaper than lithium)

« High natural abundance and wide availability of Na

« High energy density compared with Pb-acid

* Designed specifically for NETWORKS

* More scope for step-change than lithium-ion - a white space.

« Team combines expertise in materials innovation at St Andrews with
materials characterisation at Cambridge, and build on a significant track
record in Li-ion batteries.

Challenge: to find new anode and cathode materials that will make Na —ion
batteries for networks viable. Achievable with the resources available. Will

Anodes — Si, B, titanates S———

Cathodes - Na2MnSiO4,

. ) e
NaNi1-xMnxPO4 — = - =
409 = = =
(4 ]




Redox Flow Batteries

« Energy and power can be de-coupled making RFBs well suited to grid

storage applications.
« Low cost offered through the development of novel liquid-gas and semi-

solid concepts — significant scope for innovation over current RFB

technology.
« Team combines expertise in new materials and catalysts at UCL with

electrochemical engineering capability at Imperial College, and builds on
two recent liquid-gas patents at Imperial.

Challenge: to develop novel low cost redox flow batteries based around new
liguid-gas and semi-solid concepts. oneraton
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Thermal Energy Storage

« Thermal Energy Storage (TES) suited for grid-scale storage and long life (20
years +).

« Potential for low cost.

 High energy density (in terms of both mass and volume).

« Designed for integration with NETWORKS

 Led by Leeds University, who have a significant track record in this field.

Challenges: to develop nano —structured TEM materials that are chemically
stable, have a high thermal conductivity and are able to withstand over 20000
heating-cooling cycles; to develop scalable and fast response heat exchange
systems with minimal effect of interfacial resistance.
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Sclence to manuracturing

* Previous UK innovations in EC storage (Li-ion battery, Oxford 1979) not fully
exploited in UK partly because manufacturing technology ignored.

« Start with supercapacitors to drive the exploitation of large area, thin film
electrode manufacture, then exploit in novel systems e.g. Na-ion batteries;
battery-supercapacitor hybrids.

« Use whole systems modelling to set the “right” performance-cost targets.
« Use experimental performance-cost data to re-calibrate models and iterate.

« Team combines expertise in supercapacitors at Sheffield with expertise in
materials manufacturing at Oxford.

Challenge: grid storage mandates innovative manufacturing approaches - low cost,
large area, environmental compatibility.
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Maturity of Renewable Energy Technologies
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