

Energy[r]evolution a sustainable World Energy Outlook

Christine Lins

Sven Teske

Secretary General

Director Renewable Energy

European Renewable Energy Council

Greenpeace International

Copenhagen, 15th December 2009

REN21/IRENA side event @ COP15

GREENPEACE

- Umbrella organisation of the European renewable energy industry
- 450.000 jobs in EU renewable energy industry

• Annual turnover 2008: 45 billion €

A SUSTAINABLE WORLD ENERGY OUTLOOK

A SUSTAINABLE WORLD ENERGY OUTLOOK

Why Scenarios?

- images of alternative futures
- neither predictions nor forecasts
- image of how the future could unfold
- useful tools for investigating alternative future developments and their implications

Scenarios can create a vision for the future and guide decision makers.

A SUSTAINABLE WORLD ENERGY OUTLOOK

Development of different scenarios

Climate & Energy Policy targets:

- Stabilize global CO₂-concentration under 400 ppm
- Global CO₂ emissions peak by 2015
- Per capita emissions by 2050: $\sim 1 \text{ tCO}_2/a$
- Rapid fossil fuel phase-out
- Only proven technology will be used
- Equity and fairness, sustainable economic growth

energy [**r]evolution** A SUSTAINABLE WORLD ENERGY OUTLOOK

Approach

- Development of a 10-region model (based on IEA regions)
- Economic development and population development according to IEA World Energy Outlook 2006 (extrapolated to 2050)
- Reference Scenario: based on IEA World Energy Outlook 2006 (extrapolated to 2050)
- Alternative Scenarios:

 - Review process:

- regional counterparts (academia, NGO)
- → EREC / Greenpeace

A SUSTAINABLE WORLD ENERGY OUTLOOK

The logic of the Energy [r]evolution scenario

From principles to practice - Use the current "time window" for

Step 1: Energy Efficiency

Step 2: Structural Changes

- Decentralised energy and large scale renewables
- Cogeneration

Step 3: Energy Efficient Transport

- Efficient Public Transport Systems, efficient cars, trucks etc.
- Sustainable biofuels

Scenario principles in a nutshell

- Smart consumption, generation and distribution
- Energy production moves closer to the consumer
- Maximum use of locally available, environmentally friendly fuels

A SUSTAINABLE WORLD ENERGY OUTLOOK

The renewable energy industry – Status Quo

SELECTED INDICATORS AND TOP FIVE COUNTRIES

SELECTED INDICATORS	2006 🔶	2007 🔶	2008
Investment in new renewable capacity (annual)'	63 🔶	104 🔶	120 billion USD
Renewables power capacity (existing, excl. large hydro)	207 🔶	240 🔶	280 GW
Renewables power capacity (existing, incl. large hydro)	1,020 🔶	1,070 🔶	1,140 GW
Wind power capacity (existing)	74 🔶	94 🔶	121 GW
Grid-connected solar PV capacity (existing)	5.1 🔶	7.5 🔶	13 GW
Solar PV production (annual)	2.5 🔶	3.7 🔶	6.9 GW
Solar hot water capacity (existing)	105 🔶	126 🔶	145 GWth
Ethanol production (annual)	39 🔶	50 🔶	67 billion liters
Biodiesel production (annual)	6 🔶	9 🔶	12 billion liters
Countries with policy targets		66 🔶	73
States/provinces/countries with feed-in policies ²		49 🔶	63
States/provinces/countries with RPS policies		44 🔶	49
States/provinces/countries with biofuels mandates	A A A A A A A A A A A A A A A A A A A	53 🔶	55

Source: REN21

A SUSTAINABLE WORLD ENERGY OUTLOOK

A SUSTAINABLE WORLD ENERGY OUTLOOK

figure 7.2: average annual growth rates of renewable energy capacity, 2002-2006

A SUSTAINABLE WORLD ENERGY OUTLOOK

New Power Capacity installed in 2008 in EU (MW)

** Source: Estimation EPIA

Source: EWEA and Platts Power Vision

A SUSTAINABLE WORLD ENERGY OUTLOOK

(%) New Capacity 2008: 23.8 GW New Capacity 2008: 23.8 GW RES 57.0% (Coal

Source: Platts, EWEA, EPIA

A SUSTAINABLE WORLD ENERGY OUTLOOK

Jack, age 6,

A SUSTAINABLE WORLD ENERGY OUTLOOK

www.erec.org

EREC European Reneawble Energy Council Renewable Energy House Rue d'Arlon 63-67 B-1040 Brussels, Belgium <u>lins@erec.org</u>

