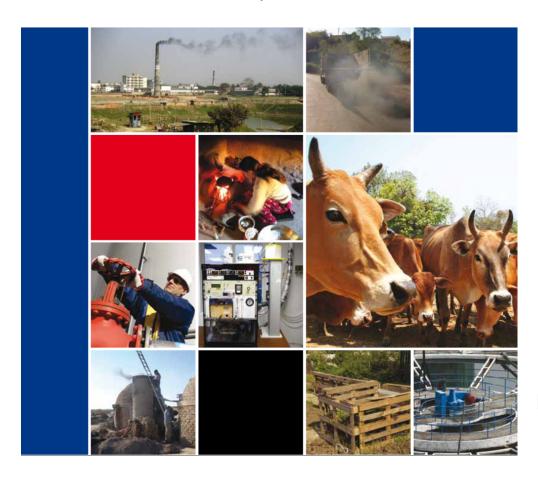


'An Integrated Assessment of Black Carbon and Tropospheric Ozone'

http://www.unep.org/dewa/Portals/67/pdf/BlackCarbon SDM.pdf

Near-term Climate and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers

http://www.unep.org/publications/ebooks/SLCF/



Integrated Assessment of Black Carbon and Tropospheric Ozone

Summary for Decision Makers

UNEP/WMO Integrated Assessment of Black Carbon and Tropospheric Ozone

Johan Kuylenstierna, Stockholm Environment Institute, SEI, Scientific Coordinator and lead author

Drew Shindell, NASA-GISS, Chair; Vice-Chairs: Frank Raes, Joint Research Centre, EC; V. Ramanathan, Scripps Institution of Oceanography; Kim Oanh, AIT; Luis Cifuentes, Catholic University of Chile

Coordinating lead authors: **David Streets**, Argonne National Laboratory; **David Fowler**, CEH; **Lisa Emberson**,
SEI; **Martin Williams**, Kings College
London

50 Contributors, over 100 reviewers

UNEP/WMO Coordinators: Volodymyr Demkine, UNEP / Liisa Jalkanen, WMO

Near-term Climate Protection and Clean Air Benefits:

Actions for Controlling Short-Lived Climate Forcers

A UNEP Synthesis Report

Near-term Climate and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers

Lead authors: Johan Kuylenstierna (SEI);
Cristina Zucca (UNEP); Marcus Amann
(IIASA); Beatriz Cardenas (INE, Mexico);
Bradnee Chambers (UNEP); Zbigniew
Klimont (IIASA); Kevin Hicks (SEI);
Richard Mills (IUAPPA); Luisa Molina
(MIT); Frank Murray (Murdoch University);
Pam Pearson (ICCI); Surya Sethi (UoS);
Drew Shindell (NASA-GISS); Youba
Sokona (ACPC); Sara Terry (US EPA);
Harry Vallack (SEI); Rita van Dingenen
(EU JRC); Martin Williams (Kings
College); Eric Zusman (IGES)

Editorial assisstance from **Joseph Alcamo** (UNEP) and **Svante Bodin** (Swedish Ministry of Environment)

49 external reviewers

Climate and Clean Air Coalition to reduce Short-Lived Climate Pollutants

There is a lot of scientific and political interest – Why?

What are short-lived climate pollutants?

Short-lived climate pollutants: Cause global warming & relatively short-lived in the atmosphere.

Black carbon, methane, tropospheric ozone

Multiple benefits of reducing short-lived climate pollutants:

- Reduce air pollution Protect health and crops
- Slow down near-term global warming, reduce regional impacts of climate change

Also some HFCs

Lifetimes in the atmosphere

Substance	Lifetime
Carbon dioxide	Decades to centuries and about 20 per cent will persist for many millennia
Ozone	4 – 18 days
Methane	12 years
Black carbon	3-8 days

Air pollution: unfinished business on the sustainable development agenda

Outdoor air pollution

"Some progress": Despite some progress, outdoor air pollution continues to have serious impacts on the environment & human health.

About 1.2 (3.7?) million premature deaths each year due to outside air pollution.

Indoor air pollution

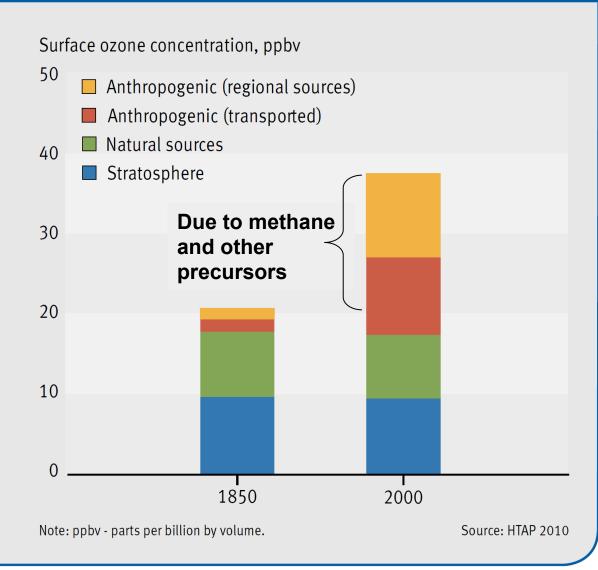
"little or no progress"

"Indoor air pollution from particulate matter continues to have major health impacts, particularly on women and children."

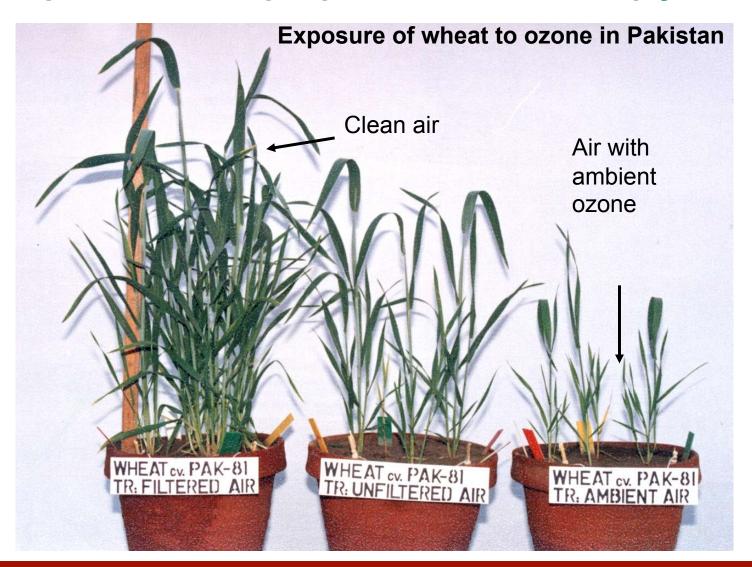
- about3 billion people cook and heat using open fires and leaky stoves burning biomass and coal
- Around 2 million people die each year prematurely from illness attributable to indoor air pollution

Source: WHO statistics

Ground level ozone increasing over wide areas



Reducing ground level ozone:


- protects public health
- reduces ozone damage to crops

Source: UNEP GEO-5, HTAP

Impact of the Tropospheric Ozone on Crop yields

A package of 16 measures can substantially reduce emissions and achieve multiple benefits

IIASA ranked mitigation measures by the net climate impact (using GWP) of their emission changes (considering CO, CH₄, BC, OC, SO₂, NO_X, NMVOCs, and CO₂), picked the top measures – about 90% of warming benefit


Black carbon measures

- addressing emissions from incomplete combustion
 - BC, OC, methane, CO, NMVOCs

reducing methane emissions

No technical breakthroughs

These measures already implemented in many countries Cost-effective