Avoided impacts and social and economic benefits: state of science

Michiel Schaeffer 18 May 2016

New results on difference between impacts and risks at 1.5°C and 2°C

- IPCC AR5 differentiation between warming levels focused on higher levels of warming
- New study led by Climate Analytics scientists out a few weeks ago is first to address the difference in climate impacts between 1.5°C and 2°C warming for 11 key impact indicators, including extreme events (hot, wet and dry events), water availability, crop yields, risk to coral reefs and sea-level rise – based on a consistent and comprehensive assessment of existing projections
- **Regional perspective:** Assessment of 25 world regions providing detailed information at regional and sectoral level
- Significant differences between 1.5°C and 2°C on the regional level for all indicators considered

The difference between 1.5°C and 2°C

- 1.5°C climate at outer edge of historical experience, 2°C represents new climate regime, particularly in tropical regions.
- 50% increase in heat-wave length
- Near-doubling of water availability reduction in dry subtropical regions

Unprecedented global, mass coral bleaching event under way...

Images from December 2014 (left) and February 2015 show coral bleaching in the Pacific waters around American Samoa.

ECOLOGY

El Niño's warmth devastating reefs worldwide

Recent aerial surveys of Australia's Great Barrier Reef find massive coral bleaching

The difference between 1.5°C and 2°C – A reason for concern

1.5°C 2°C

2050 about 90% near 100%

2100 about 70% near 100%

50% of current cropproducing regions may experience yield reductions of W heat: 14% Maize: 8% Rice: 8% Soy: 10%

W heat: 19%
Maize: 12%
Rice: 16%
Soy: 12%

- Decisive for the future of tropical coral reefs
- Substantial risk increase for regional crop yield reductions

Ocean acidification: corals and other sea life also at risk from high CO₂ concentrations

- NH: Mauna Loa (grey), SH: Cape Grim (black)
 Current policies presently in place around the world (http://climateactiontracker.org/global.html)
- Unconditional pledges or promises that governments have made, including in submitted INDCs as of 1 October 2015 (http://climateactiontracker.org/global.html)
- MESSAGE Integrated Assessment Model (IAM) of energy-economic system (Rogelj et al. 2015)
- 5) Cao & Caldeira (2008), Silverman et al. (2009)

Only 1.5°C may prevent long-term multimeter sea-level rise...

Long-term Sea-level rise

of sea-level leclines only r 1.5° C arios

Levermann, A. et al. PNAS (2013).

Instability of Antarctic ice sheet might lead to up to 1m additional sea-level rise in 2100...

Deconto & Pollard (2016)

Going from 1.5°C to 2°C warming risks crossing many more tipping points in the earth system

	1.5°C	2°C
Number of crossed thresholds of abrupt shifts in earth system models	20%	50%

- Scientific review (meta-analysis)
 of multiple abrupt shifts in
 climate system reveal steep
 increase between 1.5°C and 2°C
- Risk for "tipping" of Greenland and parts of West-Antarctic icesheet increase rapidly

Global economic impacts are significantly lower at 1.5°C...

The 1.5°C temperature limit in the Paris Agreement and implications for energy transformation

Bill Hare 18 May 2016

Recent temperature records, the 1.5°C limit and what this means...

Has the
1.5°C limit
been
broken?
Observations
of recent
warming
compared to
long-term
temperature
projections

Is 1.5°C still feasible? What does it mean for the energy system?

つ つ

In February 2016 global mean temperatures spiked to more than 1.5° C above pre-industrial levels...

No!

And here is why:

Long-term warming of about 1°C above pre-industrial is in line with the 30 year long-term trend...

 On longer time scales, signatures of natural variability (positive as well as negative) vanish

Observed warming is in line with long-term trend

What does this entail for long-term warming trajectories?

What are the regional implications?

What are the implications for different sectors?

"Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels (...)"

What are the implications for policy makers?

How to get onto a 1.5°C pathway?

1.5 DEGREES

What are the implications of 1.5°C for policy makers?

What does 1.5°C mean for global fossil-fuel related emissions?

Cumulative global fossil-fuel related emissions (GtCO2)

	2015-2050	2051-2100	2015-2100
1.5°C	680	-300	380
2°C	930	-90	840

What does 1.5°C mean for global fossil-fuel related emissions?

Cumulative global fossil-fuel related emissions (GtCO2)

	2015-2050	2051-2100	2015-2100
1.5°C	680	-300	380
2°C	930	-90	840

What does 1.5°C mean for global fossil-fuel related emissions?

Cumulative global fossil-fuel related emissions (GtCO2)

	2015-2050	2051-2100	2015-2100
1.5°C	680	-300	380
2°C	930	-90	840

What does 1.5°C mean for negative emissions?

Cumulative negative emissions (GtCO2)

	World
1.5°C	-457
2°C	-448

Power Sector: rapid phase out of coal

Where we need to go:

(-70% by 2030)

Where we are going: 2440 new coal power plants planned around the world

Source: Message Model

Power Sector: rapid phase out of coal

- Global technical potential is substantially higher than demand
- Economic wide policies are cost effective
- Some renewable energy technologies are already broadly competitive at existing energy prices
- There is no fundamental technological limit to renewable energy integration to existing energy systems
- Contribution to sustainable
 development: development increased
 energy security, access to energy,
 reduced air pollution and related
 health problems

Source: IPCC Special Report on Renewable Energy Sources (SRREN)

Bioenergy: not a decisive difference between 1.5 and 2°C

- Reaching the 1.5° C
 limit requires the
 same technologies as
 2° C, but deployed
 earlier
- Bioenergy demand for 1.5° C is not higher than for 2° C, but needs to be introduced faster and reach large scale around 10 years earlier

Industry: energy efficiency is key to reduce energy intensity

Where we need to go:

-30% by 2030.

Acceleration of efforts is required.

Where we are going:

20% below 2010 (Baseline)

Source: Message Model

- Huge co-benefits in energy security,
 economic growth and the
 environment
- No unexpected technological breakthroughs needed
- 80% of potential in the building sector, more than 50% in industry are not tapped
- Growth in global primary energy demand could be halved by 2035 whilst meeting energy service needs!
- Every additional dollar invested can generate three dollars in future fuel savings by 2050
- Short payback periods: between 2 and 8 years

Source: IEA World Energy Outlook 2012

Buildings: energy efficiency is key to reduce energy intensity

Energy Intensity (Buildings)

Where we need to go: -50% by 2030, below

2010. Sustained efforts are required

Where we are going: - 40% (Baseline scenario)

Source: Message Model

It might seem a small difference, but very important to get 1.5C

Transport: electrification is key

Where we need to go

- 4 fold increase by 2030

Where we are going:

- 12% increase by 2030

Mitigation Costs of 1.5°C pathway vs 2°C pathway

- Mitigation Cost of limiting warming below 2°C is a reduction in global GDP growth of about 0.06% of GDP p.a. over the 21st century.
 - Reduce economic growth rate from, say, 2.30% to 2.24% per year.
 - 2 year delay in reaching the same level of global wealth over the period from 2010 to 2100.
- Mitigation Cost of limiting warming below 1.5°C by 2100 is about 50% more, about 0.1 % of GDP p.a. over century.
 - Reduce economic growth from, say, 2.30% to 2.20% per
 - 4 year delay in reaching the same level of global wealth over the period from 2010 to 2100.
- Mitigation costs do not include the co-benefits which are often as large as or greater than the direct costs.

1.5°C Pathway

- 1.5°C pathway: technically and economically feasible
 - Aggregated long-term mitigation costs that are about 1.5 to 2.1 times higher for 1.5°C than for 2°C scenarios, with a larger effect on near-term costs than on long-term costs;
- Same technologies as 2°C, to be deployed 10-20 years earlier
- Phase out coal much faster
- Tackle all sectors including building and transport
- Increase energy efficiency
- Negative CO₂ emissions required in the second half of the century
- No silver bullet!

Assessment of INDCs and implications for the 1.5° C temperature limit

Jasmin Cantzler 18 May 2016

The Climate Action Tracker assesses INDCs and current policies

- Providing national, fast-response assessments for 30 countries covering more than 80% of global emissions.
- Evaluating emission reduction **targets**, current climate **policies**.
- Rating the adequacy of INDCs.
- Evaluating consequences of national emissions on global climate through aggregation of national pathways to global level.

The current level of INDC ambition is not compatible with either 1.5 or 2°C pathways...

A finding that is also confirmed by the UNFCCC Synthesis Report!

What are the implications on temperature?

- INDCs lead to 2.7° C (likely below 3° C and a 90% chance of warming above 2° C)
- INDCs result in an improvement from current policies, BUT still a long way to go:
- Vast majority of INDCs not in line with either 2° C or 1.5° C pathways

The current INDCs are <u>not sufficient to meet the temperature goal</u> agreed in Paris of holding warming well below 2° C and pursuing 1.5° C.

The NDCs for the period up until 2025, 2030 must be substantially stronger than those currently on the table for holding warming well below 2° C and pursuing 1.5° C.

Waiting until the Global Stocktake would be leaving it too late. Instead, the Facilitative Dialogue is the logical place for it.

All Parties' NDCs must continually increase in ambition; this was the process agreed in Paris.

Implications for the 1.5° C temperature limit

CLIMATE &

Science based policy to prevent dangerous climate change

www.climateanalytics.org

You can find additional information about climate impacts and feasibility of the 1.5°C target on our website...

http://climateanalytics.org/hot-topics