UNFCC COP18/MOP8: UN Side Events on Mitigation Qatar, Doha, 1. December 2012

Application of IAEA's Energy Tools in Capacity Building and GHG Mitigation Analysis

Dr. A. Hainoun Division for Energy System Analysis & Reactor Safety Nuclear Engineering Department AECS ahainoun@aec.org.sy

- IAEA's Energy Planning Tools: capacity building and application;
- Energy Planning Studies: selected cases
- GHG Emissions and Mitigation Strategies;
- Conclusions.

Energy planning in Syria a systematic approach providing comprehensive energy system analysis

Identification of optimal energy supply strategy with respect to sustainable development and climate change mitigation

General Approach for Energy Planning

The production, distribution and use of energy create pressures on the environment in the household, workplace and city, and at the national, regional and global levels

Examples for implemented studies on analyzing energy demand and supply strategies and GHG mitigation options using IAEA tools

National Energy Studies

Supporting national decision maker (prime minister council) to formulate optimal energy supply strategy (up to the year 2030)

Energy Directorate, Arab League

Trend Analysis of Future Optimal Expansion Planes of Electricity Generation Systems for Arab Countries (2007-2030)

Master Plan: Energy Efficiency and Renewable Energies (MEERE), GTZ+NERC+AECS

Evaluating the impact of various energy conservation measures and renewable energies —on demand and supply side- on the future development of Syrian energy sector.

Primary energy saving by type of measures (Mtoe)

	Conservation and Efficiency Improvement	Substitution by Renewables	Total Saving
2010	0.14	0.04	0.18
2015	3.30	0.48	3.78
2020	6.29	1.59	7.88
2025	10.22	3.14	13.36
2030	14.80	3.81	18.61
Cumulative			
Saving (2010-			
2030)	114.6	30.0	144.6

Master Plan: Energy Efficiency and Renewable Energies (MEERE), GTZ+NERC+AECS

Energy Efficient Building Codes in Syria GEF+NERC+AECS

Evaluating the impact of energy conservation and efficiency improvement measures on the reduction of GHG emissions of Syrian building sector due to HVAC

	direct project impacts: 2010-2015			indirect impact: 2015-2030			
	Energy Saving (Mtoe)		CO2 Reduction	Energy Saving (Mtoe)		CO2 Reduction	
	Electricity	Fossil Fuel	(MtCO2)	Electricity	Fossil Fuel	(MtCO2)	
Snace Heating	0.008	0 705	0.680	0 103	11 784	20 147	
AC	0.085	0	0.000	2.099	0	20.147	
Ventilation	0.005	0	1.973	0.121	0	32.997	
TOTAL	0.098	0.705	2.654	2.413	11.784	53.143	

Energy Efficient Building Codes in Syria GEF+NERC+AECS

Development of grid emission factor for Syrian electric generation system

	2005	2007	2010	2015	2020	2025	2030
Grid Emission Factor							
(tCO2/GWh)	642.86	640.77	471.58	478.32	511.66	529.76	583.23

GHG Mitigation of Energy Sector INC: UNDP+AECS

GHG Inventory Calculation According to IPCC, Adaptation Measures to Lessen Climate Variability and Change Impacts

Cumulative CO2 emissions reduction 2005-2030: ca. 200 Mt

CO2 Mitigation of Power Sector

Environmental Impacts and Health Damage

Environmental impacts affect Atmosphere, Water and Land at national, regional and global levels.

Atmosphere= Air Quality, Climate Change

 Air Quality: air pollutants of SOx,NOx, PM → human health damage

•GHG: changing the climate for the worse

- IAEA's tools are very useful approach for energy planning and assessing GHG mitigation of energy sector;
- Syrian experience with IAEA's tools have been disseminated to support further countries and applications;
- Power sector is the main GHG contributor in Syria,
- Energy saving, conservation and renewables are the main mitigation measures.

