National Human Development Report 2009/10

China and a Sustainable Future Towards a Low Carbon Economy & Society

Dr. Goerild Heggelund UNDP China

&

Professor Zou Ji Programme of Energy and Climate Economics Renmin University of China

能源与气候经济学项目 PROGRAMME OF ENERGY & CLIMATE ECONOMICS

UNDP National Human Development Reports

- Human Development Reports are UNDP's flagship
 publications
 - Global, regional and national level reports
 - Serving as advocacy tools for informing policy-making with development-related principles and facts
- Human Development Concept
 - A theory and an approach that integrates economic, social and political development.
 - Economic growth a means, not an ultimate objective.
- Millennium Development Goals MDG
- Human Development Index (HDI) measures basic dimensions of human life:
 - Life expectancy at birth; Adult literacy rate and combined school enrolment ratios; Real GDP per capita
- 20th anniversary of Global HDRs 2010
 - Launch on 4th November

China's NHDR 2009/10

- Breaks new ground
 - links economic growth, climate change, carbon emissions and human development in China.
- Analyzes
 - the impact on China in shifting to a low carbon economy and society
 - Risks and benefits to China of low carbon development shift
- Key messages
 - Chinese development at a critical cross-road, current model of growth insufficient to the country's emerging challenges, needs
 - A gradual and smart shift to low carbon development modes is the best option for China to move forward.
 - There is a need to decouple human development from high growth rates and to make growth more oriented around quality and efficiency.
- The Report asks: what will it take for China to adopt a low carbon path to development?

CO2 Emissions by Region in 2005

CO2 Emissions by Region in 2006

CO2 Emissions by Region in 2007

CO2 Emissions by Region in 2008

CO2 Emissions Per Capita by Region in 2005

CO2 Emissions Per Capita by Region in 2007

CO2 Emissions Per Capita by Region in 2006

CO2 Emissions Per Capita by Region in 2008

Carbon Intensity by Region in 2005

Carbon Intensity by Region in 2007

Carbon Intensity by Region in 2006

Carbon Intensity by Region In 2008

Provincial level carbon productivity and HDI

Source: China Statistical Yearbook 2008, adapted by Taskforce on NHDR 2009-2010, Renmin University of China. Note: Data on Tibet were unavailable.

Technology needs to play key role in developing LCES

- Need to explore opportunities and measure costs and co-benefits.
- Technology roadmap and needs assessment is key to identify where greatest opportunities are.
- Technology choices will influence the extent to which China follows a Business As Usual, Emissions Control or Emissions Abatement pathway.
- Investing in and deploying advanced technologies now could avoid lock-in effects in the energy sector and infrastructure.

Technological roadmap towards low carbon economy (LCES)

- Integration of socioeconomic development, energy security, and technological change.
- Comprehensive policy messages: emission targets, incremental investment, costs, and policy & measures.
- Based on modeling exercise and currently available information and knowledge.

CO₂ Emission Scenario

Carbon intensity

Cabon Emission Intensity Under EC, kg CO2/\$,2005price Cabon Emission Intensity Under EA, kg CO2/\$,2005price

	Deployment & Diffusion (Near term)	Demonstration (Mid-term)	R&D (long term)		
Power	USC; On-shore Wind power technology; 3rd generation large-scale Advanced pressurized water reactor; Geothermal- Conventional; High-efficiency natural gas fired power generation;	Coal Integrated Gasification Combined Cycle (IGCC); Off shore wind power; Solar Photovoltaic; Geothermal–Enhanced; 2nd Biomass;	Low cost CO2 capture and storage; Nuclear fusion; CSP; Power storage; Smart grid; 4th nuclear generation; Solar nanotechnology photovoltaic; Hydrogen production, storage and distribution; Fuel Cell		
Steel	CDQ; CCPP; CMC; Power, heat and fuel recovery; Coal Injection of Blast Furnace; Energy management center;	COREX; FINEX; Advance EF; Smelting reduction technology; Waste Plastic Injection; Direct Casting;	CO2 capture and storage;		
Transport	Enhance fuel economy of vehicles by improved engine/ transmission/ matching technology; Develop advanced diesel vehicles; Improve railway electrification; Aviate fuel economy management;	Hybrid vehicles; Enhance fuel economy of transport system by information & intelligent systems Improved road network;	Fuel cell vehicles; Electric-motor vehicles; Optimizing the construction and integration of transport capacity;		
Cement	NSP cement kiln technology, especially the automatic control device and the overall operation level; Low-temperature cogeneration technology;	Eco-cement Alternative fuels and cement clinkers;	CCS;		
Chemical	New type catalyst; Large-scaled Synthetic Ammonia equipment; Optimize structure of raw material for Ethylene;	Alternative fuels and raw materials;	CCS;		
Buildings	Green Lighting; Technologies and materials of heat-insulation of external walls and roofs; Advanced efficiency electric devices ;	District energy system; Heat pump system; supervising and Monitoring of building energy consumption technologies; Heat- electricity-coal gas triple co-supply system	Energy storage technology ; Zero-emission buildings Building integrated photovoltaic solar power system; Advanced city plan;		

Key Technology Needs

Incremental investment

Annual incremental investment under EC, billion US\$-2005

Annual incremental investment under EA, billion US\$-2005

Incremental cost

	Incremental cost under EC			Incremental cost under EA		
	2020	2030	2050	2020	2030	2050
Emission per capita t-CO2	5.6	5.8	6.3	5.6	5.8	3.7
Emission intensity reduction (compared with 2005 level)	51	69	85	51	69	91
Emission reduction Gt-CO2	3.2	5.1	6.7	3.2	5.1	10.7
Incremental cost (billion	86	269	523	86	269	1584
Reduction cost(US\$-2005/t CO2)	27	56	78	27	56	148
Percent of GDP (%)	1.2%	2.2%	2%	1.2%	2.2%	6%
Cost of per household (US\$-2005/ year)	182	538	1006	182	538	3046

Co-benefits of LCES

- Poverty alleviation
- Green job
- Improvement of local environmental quality and resources security
- Public health, and
- Future comparativeness along with technological advance

Challenges to achieve LCES

- Specific development stage with high carbon intensity and urbanization and industrialization process
- Energy endowment: coal domination
- Endogenous capacity for technological design and innovation
- Huge population with need for employment and social security

Policy Roadmap:

towards effectiveness and efficiency

Step 1.

- Plan and national target: allocate the national target into enterprises via (in a view to redefine stakeholder's responsibility and improve efficiency by market-based instruments)
 - Highly concentrative sectors (immediately, e.g., power, petrochemical, etc)
 - Competitive sectors (with a transition period, e.g. cement metals, etc)
 - Local governments (immediately, e.g., urban transport, housing, etc)
- Capacity building and policy infrastructure: monitoring, carbon accounting, enforcement and awareness;
- Development of standards and codes as basis of economic instruments of policies;

Step 2

• Short term: step-by-step integrated fiscal reform by introduction to comprehensive environmental tax while reducing employment tax in a view to adjust factor pricing together with transfer of payment; and

Step 3

• Medium and long term: building up cap-and-trade system

Thank you for your attention

Dr. Goerild Heggelund goerild.heggelund@undp.org

Professor Zou Ji zouji@ruc.edu.cn