

Carbon loss associated with land use change and wildfires in tropical peatlands

Louis Verchot, Kristell Hergoualc'h, Daniel Murdiyarso

THINKING beyond the canopy

10 June 2011 - CIFOR side event SB34, Bonn

Indonesia is #5 in the top 10 list of polluters

			CO ₂ e
Country	MtCO ₂ e	World Total	Per Person
China	7,216	16.4%	5.5
United States of America	6,931	15.7%	23.5
European Union (27)	5,329	12.1%	10.9
Brazil	2,856	6.5%	15.3
Indonesia	2,046	4.6%	9.3
Russian Federation	2,028	4.6%	14.2
India	1,870	4.2%	1.7
Japan	1,387	3.1%	10.9
Germany	1,005	2.3%	12.2
Canada	808	1.8%	25.0

Indonesia's emissions

Data source: Min. Envi. Jakarta

THINKING beyond the canopy

BAPENAS estimates that the problem will grow

Under BAU, peat will become the main source of emissions. In 2005-06, peat land accounts for almost 50% of national emissions, while its contribution to Indonesia's total GDP is only about USD1.06 billion (0.26%)

LAND COVER OF LICENSED PEAT LANDS

LAND COVER OF NON-LICENSED PEAT LANDS

Berbak National Park Sumatra

• Sadu

C2010 Google

Eve alt 59.62 mi

N

Iskandar Airport

-

Tanjung Puting

© 2011 Tele Atlas © 2011 Europa Technologies Image © 2011 TerraMetrics Image © 2011 DigitalGlobe 2°39'52.34" S 112°10'54.08" E elev 53 ft

4

Eye alt 56.84 ml 🔘

Tropical Peat forests (freshwater wetlands)

- There are about 441,000 km² of tropical peatlands ~11% of the total peatland area; volume is ~18 25% (Page et al. 2010).
- Southeast Asia is home to 25 million hectares of peatlands, or 56% of all tropical peatlands.
- Total C storage in these ecosystems may be among the largest forest C pools on Earth. Yet data are lacking quantifying these globally significant carbon stores.
- Tropical peat forests are excellent candidates for inclusion in REDD+ strategies, but critical information on carbon pools and land use is needed in order to be effective.

Methodological approaches

Stock difference approach After Before C_{F} C_{OP} $C_{loss} = C_F - C_{OP}$ C_{loss} rate = C_{loss} / time

Tropical peat lands store large amounts of carbon

- Total storage 81.7 91.9 Gt C (Page et al. 2011)
- Indonesia has the largest area of tropical peats
 - 210 000 270 000 Km²
 - Estimated Carbon stock : 55 ± 10 Gt (Jaenicke et al. 2008)
 - Average 5.5. m peat depth (Page et al. 2011)

Carbon loss estimates

Literature review

- Southeast Asian peatlands
- C stocks, peat C fluxes
- 56 studies

2 publications

- Murdiyarso D, Hergoualc'h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions tropical peatlands. PNAS 107, 19655-19660.
- Hergoualc'h K., Verchot L.V. (2011) Stocks and fluxes of carbon associated with land-use change in Southeast Asian tropical peatlands: a review. Global Biochemical Cycles. 25:GB2001, doi:10.1029/2009GB003718.

Carbon loss from wildfires

Stock change approach

Land-use type before fire	C stock loss (Mg C ha ⁻¹)			
	Burnt vegetation	Burnt peat	Total	
Intact forest	152 ± 36	285 ± 67	436 ± 77	
Logged forest	35 ± 36	285 ± 67	320 ± 77	
Oil palm plantation	32 ± 9	285 ± 67	316 ± 67	
Acacia plantation	28 ± 2	285 ± 67	313 ± 68	

C loss: 65 – 90% from peat

Peat forest conversion to oil palm

Combination of the 2 methodological approaches

Stock difference approach: Aboveground biomass C loss

Input – output approach: Peat C loss

Peat C stocks: Difficulties & Limits

- Bulk density
 - Presence logs
 - High water table level

Peat domes are very large and difficult to measure accurately

Fig. 5. Peat thickness model of selected peat domes in Central Kalimantan. Kriging interpolation was applied using 542 peat drilling values and a correlation function between the peat dome surface and peat thickness.

Source: Jaenecke et al., 2008

yond the canopy

Peat C stocks: Difficulties & Limits

Peat depth (up to 20 m), limited number profiles

Subsidence is a result of compaction, shrinkage and oxidation

Source: Peter van der Meer & Caspar Verwer

THINKING beyond the canopy

C fluxes into and out of the peat

Heterotrophic soil respiration = peat oxidation = peat decomposition Heterotrophic soil respiration = Total soil respiration - root respiration

Peat C balances in the forest and in the oil palm plantation

After
After
Soil heterotrophic respiration 9.3
Land clearing fire 4
Root mortality 3.6
Soluble & Physical Removal 1.0

$$\Delta C_{peat OP} = C_{in peat} - C_{out peat}$$

 $= -9.2 \text{ Mg C ha}^{-1} \text{ y}^{-1}$
 $= -230 \text{ Mg C ha}^{-1} 25 \text{ y}$

 $\Delta C_{peat F} = 0.75 \text{ Mg C ha}^{-1} \text{ y}^{-1}$ = **19 Mg C ha}{-1} 25 y**

Peat forest conversion to oil palm plantation

Before

After View of the second secon

 $\Delta C_{\text{peat F}} = 19 \text{ Mg C ha}^{-1} 25 \text{ y}$ $C_{\text{Abvgrnd biomass F}} = 180 \text{ Mg C ha}^{-1} - \frac{249 \text{ Mg C ha}^{-1}}{156 \text{ Mg C ha}^{-1}} 25 \text{ y}$ $C_{\text{Abvgrnd biomass OP}} = 24 \text{ Mg C ha}^{-1} - \frac{25 \text{ y}}{156 \text{ Mg C ha}^{-1}} 25 \text{ y}$

Conclusions

- Very large carbon loss
- Closs: 60-90% from the peat
- ⇒ **REDD** mechanism should **prioritize peat swamp forests**
- Gaps knowledge on C cycle in tropical peatlands
- Greenhouse gas accounting methods: heterotrophic soil respiration (N inputs), allometric models specific to peat swamp forests
- N₂O: Global warming potential 300
- Increase in N₂O emissions due to land-use change in tropical peatlands?

www.cifor.cgiar.org

CIFOR advances human well-being, environmental conservation, and equity by conducting research to inform policies and practices that affect forests in developing countries.

Thank you

THINKING beyond the canopy