Enhancing Global Forest Observations in a Changing Climate

Dr. Beverly Law Professor, Global Change Forest Science Oregon State University Chair, Global Terrestrial Observing System (GTOS), Terrestrial Carbon Observation Panel

COP 16: Observations for Climate Change

30 November, 2010 Cancun, Mexico

Science Objectives to Address Policy & Management Needs

- Detect and understand changes in forest ecosystems, feedbacks to climate
- Effects of deforestation, afforestation, and degradation on the land-based carbon sink
 - Carbon budgets (soil, above and belowground vegetation)
 - Interaction with changing climate (e.g. water cycle)
- Effects of climate and management on natural adaptation
 - Vulnerability to shifts in distribution of species, biomes
 - Mitigation effects in the face of climate change

CO₂ Emissions from Land Use Change (1960-2009)

Updated from Le Quéré et al. 2009, Nature Geoscience

CO₂ Emissions from Land Use Change

Friedlingstein et al. 2010, Nature Geoscience; Data: RA Houghton, GFRA 2010

Carbon in Plants and Soil Vulnerable to Land Use, Drought, Fire, Insects/Diseases

Observations Need to be Integrated Across Time and Space Scales

Integration for Regional Mapping of Terrestrial Carbon

Monitoring Deforestation

To qualify for payments under REDD, countries must be able to quantify reductions in deforestation against a historical baseline

Deforestation and Degradation Uncertainty

- Total annual change in *forest area* has an uncertainty of 10-25% in northern forests, up to 100% in tropical forests
- Uncertainties in *emissions* are high for annual values and trends (25 -100%) due to uncertainties in parameters used to translate area into CO₂ emissions
- Improved observations and integration with modeling will reduce uncertainty

FLUXNET: A Global Network of Observation Sites 500+ Sites, 10 Regional Networks, 45 Countries

Quantify and understand causes of variation in terrestrial exchange of carbon, water and energy with atmosphere <u>www.fluxdata.org</u>

It's Not Just About CO₂: Decline in Trend of Global Land Evapotranspiration

Data-driven estimate of global land ET using tower flux, meteology, remote sensing data and models
Implications to feedbacks to climate

Soil Moisture Limits Evapotranspiration Trends

Identified by integration of tower fluxes, remote sensing & models

Negative trend (red) = drier soil, decreasing ET

Jung et al. (2010), Nature

Forest Species Migration Under Climate Change: Integration of Observations and Models to Predict Potential

Long-term in situ observations of dispersal, habitat, and species distribution used to develop and parameterize models

Simulated Vulnerability to Biome Changes (1990-2100)

IC

UA

BC

TC

TB

TM

TS

TG

DE

RG

RW

RD

RE

1.00

0.50

Simulations suggest 10-50% of global land may be highly vulnerable (fair comparison with remote sensing land cover)

Field observations detected biome changes in 20th -century, yet there is a lack of spatial data on vulnerability

Hinders identification of priority areas for adaptation measures

(Gonzalez et al. 2010)

Summary of Need for Systematic Forest Observations and Integration

- Changes in terrestrial carbon sources and sinks
- Changes in water cycle, energy balance
- Natural or 'ecological' adaptation, vulnerability

Protocols for Data Collection and Submission

- Need:
 - Uniform methods, standards for high quality observations
 - Uniform database for global assessments
- Important standards/definitions:
 - Carbon stocks in vegetation and soil, productivity, component fluxes
 - Vegetation types, structure
 - Land use
- Reference for other documents (ECV, GEO Carbon Report)

Terrestrial Carbon Observations: Protocols for Vegetation Sampling and Data Submission

(0)

(55)

Office of Science

Challenges and Gaps Land Ecosystems

- Some countries without resources for inventories
- Consistent *in situ* methodology
- Sustained, systematic measurements

 e.g. soil carbon monitoring, NPP, total biomass, species
- Remote sensing gaps in coverage over time
- Data sharing transparent, timely, standardized
- Observation/model integration transition from research to application

Extras

Soil Carbon Monitoring

- Soil carbon is probably the best indicator of soil quality. soil carbon loss ~ land degradation
 - Soil and ecosystem C in plantations and reforested areas tends to be lower than natural forests
- Higher uncertainty than most other pools
- Certain soil C pools (e.g. permafrost soils) are highly vulnerable to decomposition
- Deforestation and tillage cause rapid oxidation of plowlayer soil carbon (location of highest concentrations)
- Soil carbon monitoring is needed to understand and predict net long-term effects of deforestation, reforestation and afforestation

GEO Integrated Global Carbon Observations

- Provide long-term observations required to improve the understanding of the current state and future behavior of the global carbon cycle
- Monitor and assess the effectiveness of carbon sequestration and/or emission reduction activities on global atmospheric CO₂ levels

