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2006 review of global biological impacts

#publications
= 866

#species =
several
thousand

Number of publications documenting a
response of a species, community or system to
recent climate change

Parmesan 2006, Annual Reviews Ecology Evolution and Systematics




Observed Changes in Wild Plants and Animals
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Summary of Observed Responses
0.7° C rise globally since 1900

» ~ 52 % of species studied have shifted their ranges
poleward and/or upward

« ~ 62 % of species studied shifted towards earlier spring
breeding, migrating, leafing, blooming.

- Every major group studied has been affected
- trees, shrubs, herbs, butterflies, birds, mammals,
amphibians, marine corals, invertebrates, fish & plankton

 Impacts on every continent, in every major ocean
- Northward range shifts from 50 - 1600 km, upward shifts of
up to 400 m

Parmesan & Yohe 2003 Nature; Parmesan, C. 2006 Annual Reviews of Ecology and Systematics 37:637-669; IPCC 2007




Ecological Responses Dominate - Evolution
has not Appeared to Affect Species’
Fundamental Climate Niches

Evidence for Micro-evolution - several !

No evidence for Macro-evolution:
* No evidence for new “super-hot-adapted” mutations

* No response to artificial selection to tolerate more extreme
climatic conditions than found in wild

(fruit flies, butterflies)

(Hoffmann et al 2003, Crozier 2003 a,b; Jordano et al 2000)




s Arctic Sea Ice down by 40% 1n 2007,similar in
2008; _ ~2-4° C rise 1n Arctic
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Mountaintop Species

¢ Many species have contracted
upward

e First extinctions
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Habitat Loss Coupled with Climate Change

Endangered
Quino checkerspot A S
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Assisted Colonization? A Decision Framework

Decisions

Is there a high risk of decline or
extinction under climate change? (i) Improve landscape connectivity in required direction of
€} colonization, (i) genetically enhance to improve climate
robustness of populations within existing geographic range,
and (iii) reduce local stressors on population.

Are translocation and establishment ) . )
5F bacies technecally possiblet ) Invoke ex situ conservation practices (e.g., store ega/sperm/seed).

* No

Q Is it possible to create habitat (e.g., artificial reef, wetlands) at

, _ higher latitudes to accommodate “natural” movement?
Do benefits of translocation

) outweigh the biological and
socioeconomic costs and constraints?

‘Will the organisms arrive on their own to new habitat?
-l.- Yes

A ) Wait and facilitate establishment (protect organisms as they arrive).
o Undertake translocation (assisted migration).

Hoegh-guldberg et al. Science 2008




Conservation Laws and Tools
do not provide for Climate
Change Adaptation

® Focus is on historic species range

- Past declines may underestimate future risk

- Back to historic conditions may not be best goal

® Focus is on historically occupied areas

- Areas never occupied may become crucial to
survival of some species




Climate Change Drove a Shift in Lands Deserving
Highest Conservation Priority

E.e. quino - The only existing populations with historic
densities are newly discovered sites further east and at

hlgher eIevatlons than historically-recorded distribution
- (> 4500 ft, yeIIow C|rcles)




Society for Ecological Restoration
International Primer on ER (2004) :

¢ “Restoration attempts to return an
ecosystem to its historic trajectory.”
¢ A reference system expresses “one of

many potential states that fall within the
historic range of variation of that
ecosystem.”

e Material for seeding/planting/colonizing
should come from genetically similar, or
geographically close populations




Restoration of Vernal Pool habitats in southern
California

USFWS, Recon Environmental Inc.

Photos
courtesy
Mark
Dodero,
Project
Manager &
Sr
Biologist




Landscape topography molded (shallow depression
created

* Appropriate soils brought in (build clay lens)

- Water storage, filtration & flow altered
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YEAR 3

Self-sustaining

Some weeding
needed to keep
out exotics

Habitat for 5
endangered vernal
pool species

Cost: $ 1m/acre




Pinyon Pine Die-Offs after
Drought + Heat Wave + Beetles
Restoration?

Summer 2002 May 2004

12,000 sq
km area

40% - 90% .7 £ i, 550
of trees died .45 .,
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Full Carbon Budget for Conversion of Lands to
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Indonesia Brazil

Palm Palm Soybean Sugarcane Soybean
biodiesel biodiesel biodiesel ethanol biodiesel

Tropical Peatland Tropical Cerrado Cerrado

USA
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Central Abandoned Abandoned Marginal

rainforest rainforest rainforest wooded grassland grassland cropland cropland cropland

Fargione et al. 2008 Science



Native Grasslands Sustain High
Biodiversity
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Restoration of Native American Prairie
A Win/Win Scenario

Native bunchgrasses
Deep Root system

Franzluebbers 2005, Poteet unpubil,






Long-term increases in frequencies of warm-
adapted genotypes

« Drosophila melanogaster (4 deg. latitude shift in alcohol
dehydrogenase genes)

« D. subobscura (Europe, N & S America)

« D. robusta (USA)

» Pitcher plant mosquito (Wyeomyia smithii) (shift in
photoperiod cue for diapause, USA)

(Rodriguez-trelles & Rodriguez 1998; Balanya et al. 2003, Gilcrest; Levitan et al. 2003,
Bradshaw & Holzapfel 2001; Hoffmann et al. 2003)

Selection for high dispersal genotypes at expanding range
boundaries:

- Increase in frequencies of long-winged morphs along

northern colonizing wave in 2 sp. of bush cricket
(Thomas et al 2001)




65 % of 52 butterfly species had colonized
northward at northern range boundary
(30-200 km, 30-100 years, 0.6° C warming)

Purple emperor (Apatura iris)
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1900 populations

1940 common in Denmark

1 I 1983 recorded in Sweden

1991 movement into Finland from Baltics

Parmesan et al. Nature, 1999; Henriksen & Kreutzer 1982; Ryrholm unpub.; Kaila & Kullberg pers. comm.




22 % of 40 species contracted at
southern range boundaries

* 1 species range reduction
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Stable
Populations extinct
1999 expansion into Estonia

- 2004 spread to Baltic Sea

Sooty copper (Heodes tityrus)

Parmesan et al. Nature, 1999

Toomas Tammaru, pers. Comm.



