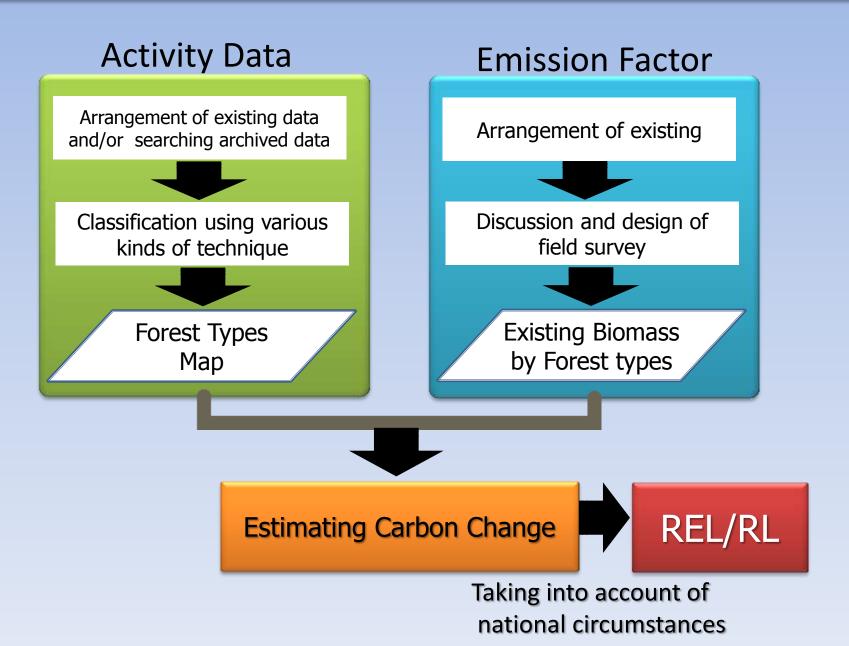


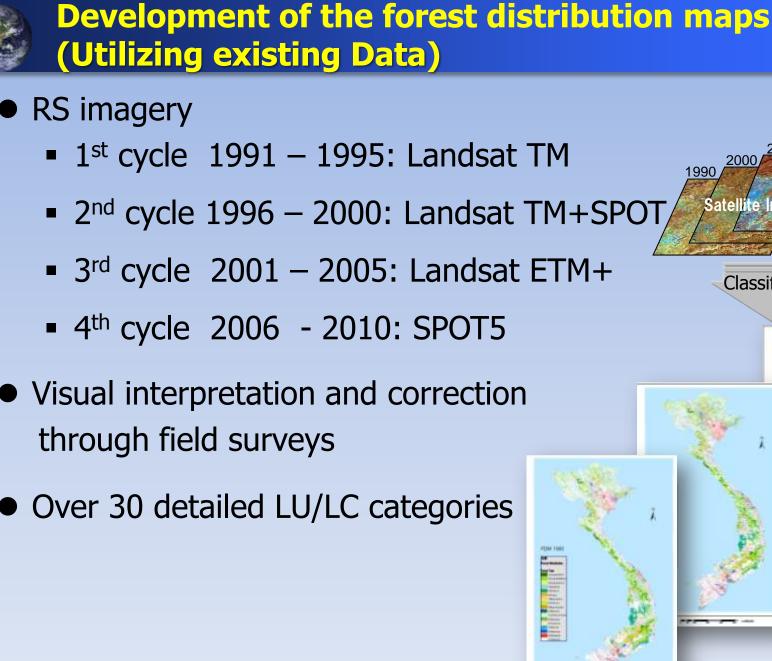
Technical option of REL/RL development

-Information for REL/RL development and idea for national forest monitoring system –

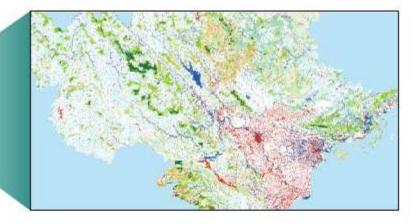
Development of NFMS and MRV system for REDD+ -Learning from Demonstration Activities-May 21, 2012

JICA Expert KEI SUZUKI



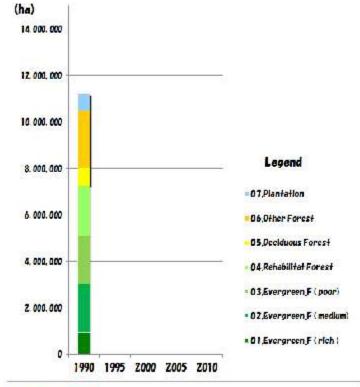

- Development of interim REL/RL in national scale (Case study in Vietnam)
- Stepwise approach for development of National Forest Monitoring System

"Study on Potential Forests and Land Related to Climate Change and Forests" funded by JICA

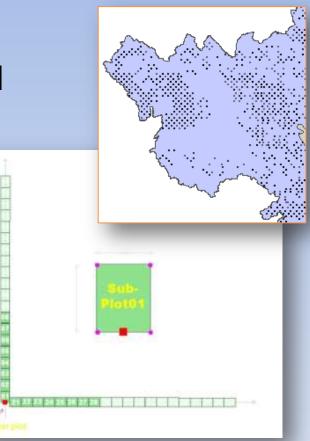

- 1. Development of Activity Data using RS data
- 2. Development of Emission Factor using NFI
- 3. Setting interim RL/RELs for REDD

Methodology for estimating carbon change





FDM 1990



A

Arrangement of the national forest inventory data (Utilizing existing Data)

- A sample plot system
- 4 cycles from 1991 with 5 years interval
 - 1st cycle 1991 1995: 3,000 Plots
 - 2nd cycle 1996 2000: 3,800 Plots
 - 3rd cycle 2001 2005: 4,200 Plots
 - 4th cycle 2006 2010: 2,100 Plots
- 8km systematic sampling
- 1 plot consisting with 40sub-plots
- Sub-Plot size=20m × 25m Rectangle

Arrangement of the national forest inventory data Results:(Mean AGB+BGB par Regions and F.Types)

 (CO_2t/ha)

※2 ※1	1	2	3	4	5	6	7	8	9	10	11	12
1			181	157								75
2	604	282	144	157	178		279					
3										115		104
4	798	299										
5	508	275	158	131		78	219	92				67
6	516	272	135	94		66	118				165	103
7	417	272	171	116		82	181	146				70
8												
9		271	110	115		86	122		105	4		85
10	465	282	158	148	196	138	249					94
11	502	291	162	135	153	91	199	253	292			163
12	511	280	120	128	189	104	240		271			106
14												102

X 1 (Bio-ecoregions);1=Cardamom Mountains rain forests, 2=Central Indochina dry forests, 3=Indochina mangroves, 4=Luang Prabang montane rain forests, 5=Northern Annamites rain forests, 6=Northern Indochina subtropical forests, 7=Northern Vietnam lowland rain forests, 8=Red River freshwater swamp forests, 9=South China-Vietnam subtropical evergreen forests, 10=Southeastern Indochina dry evergreen forests

11=Southern Annamites montane rain forests, 12=Southern Vietnam lowland dry forests, 14=Tonle Sap-Mekong peat swamp forests

***2** (Forest types) ; 1=Evergreen broadleaf forest(rich forest), 2=Evergreen broadleaf forest(medium forest), 3=Evergreen broadleaf forest(poor forest), 4=Evergreen broadleaf forest(rehabilitationr forest), 5=Deciduous forest, 6=Bamboo forest, 7=Mixed timber and bamboo forest, 8=Coniferous forest, 9=Mixed broadleaf and coniferous forest, 10=Mangrove forest, 11=Limestone forest, 12=Plantation

Activity data and emission factor

1 40	24		1	4	4.1		0.1				-	10
11				_								
	841	289	110	110	110	-	191	-	-			_
-	and.	-	-	-			-	-				-
	800	181	1410	140	-		1072					10
	MOX	179	108	191	-	106	100	- 1			134	10
1.1	-611	110	342	107			182	81				- 11
4		1.1	.114	107	· · · ·		1.1	1.2		111		
	h18]	381	. 117	14	-	Th	111	16				- T
1.80	1113	111	117	140	324	119	240	12.5	1.1.1			111
10.00	5.86	178	114	171	1.81	118	705	103	208			122
11	579	378	130	125	218	1.1.1	-215	298	224			725
- 24		-		-								

_			_		
- C	5'	~	n	n'	
			U	U	

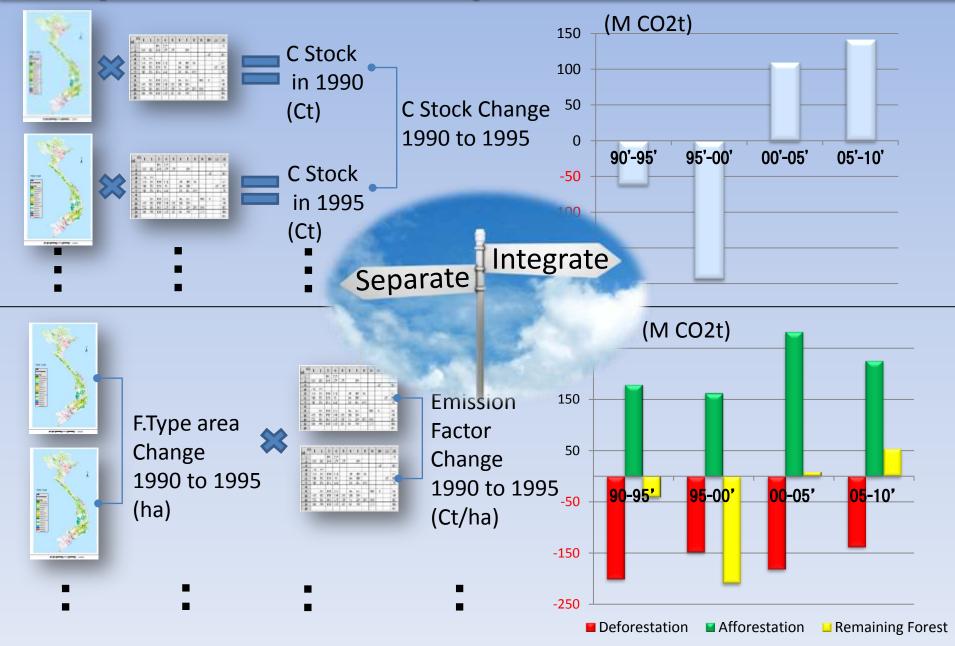
11-42	241	001	1.1	0411	1.1	0411	14.7	245		14.5		11
	_	_	146	141		_		_	_	6.4		_
- P. 1	6410	- 174	107	184	181		295			144		
1.1	1.00	12.1	1.21	1.1			1.11			63		
	\$80	101	- 167				380	1.11		1.000		
	381	324	 tilk 	- 41		- 44	258					- 17
	- 6411	321	: 114	81		-11R	181				11#	- 88
1.1	101	198	147	81			189	10	_			10
	.172	515	1.12	1.1				14.5				1.1.1
1.00		216	106	- #1	1	- 16	- 10	- 85				_ 11
1.00	841	\$79	114	141	101	116	181		- 64	1.1		- 87
1.1.11.2	Diff	378	- 148	111	-3%	- 14	- 0.0	- 137		61.		. 84
11	481	377	1118	174	1.813		104	172	313	1	28	. 84

00'~05'

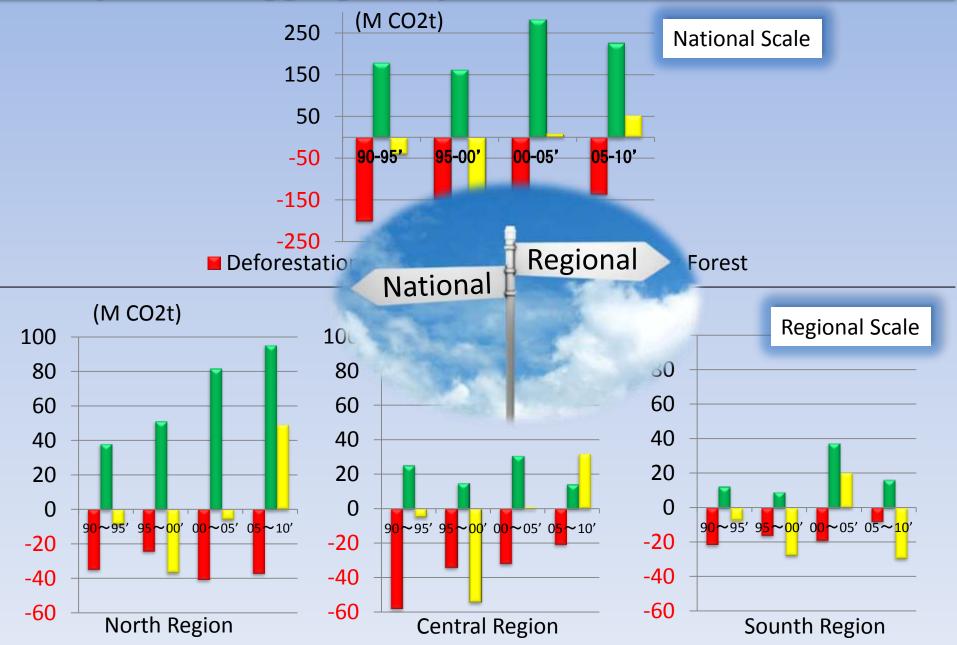
11-40	10		14.0		10.1		0.0			10.5	11	10
			181									
1	411	321	118	1445	118		316			1.1		
			1.12		1111		1111	1		. 89		
	817	380	1.8				310			1.1.1		
			1.67	101	1	81	181	- 88		_		111
1.415	ADA	1.40	119	110	τ	181	114				118	- 41
· · · ·	478	791	182	:306		181	181	87			111	- 40
	- 1	1.1				1.1						
1 a 1			-118	140		75	- 11	38		_		- T
10			143			121		315		·	5 A.	: 8
11	-845	280	141	134	387	28	154	166	788	9	158	19
11	-443	101	124	348	180		196	98	140		178	-30
										114		114

00'~10'

AU 5 (82)	0.1		10.1						10.0		- 85	10
			181	14.7								18
1	001	242	1.68	161	118		378					1.1
1	1.5.5	2.12								318		100
1.1	191	2110	1									1.11
1.4.01	+01	. 111b	188	:131		- 78	218	81				- 47
1.411	4/10	- 112	138	- 84		- 88	1116				1100	100
1.1	-811	112	111	118		81	381	1.86	-			13
	1.1	1.1										
1.414		1110		118		- 11	112		-18			. 88
1.00	481	- 257	198	140	194	1.38	248	1.1	1111			10
81	382	210	182	138	163	: 81	.199	761	-192	1.1		158
11	-511	356	120	128	100	184	240	1.11	-17)			308
												8.5.62

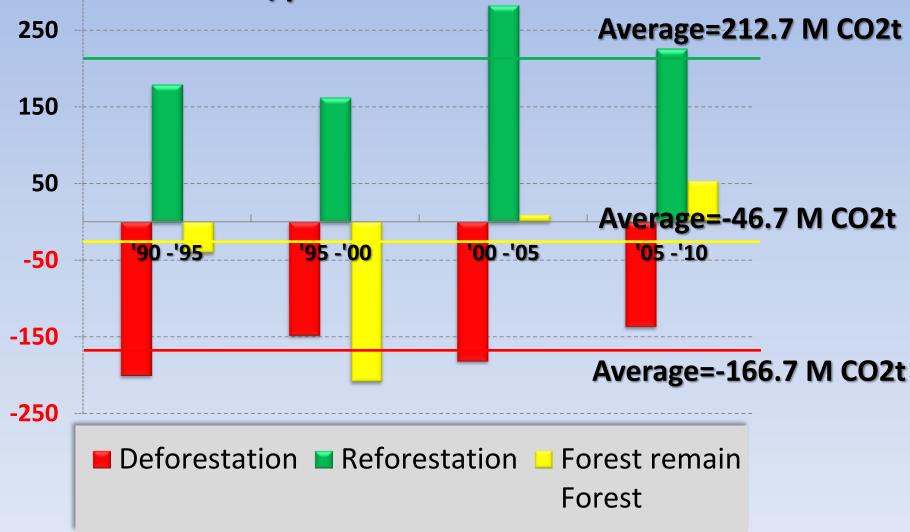


How to cook these basic information


to identify carbon changes

Item to be considered	Option 1	Option 2
Method of calculation	Integrating emission and removal	Separating emission and removal
Units of aggregation	National scale	Regional scale by administrative units

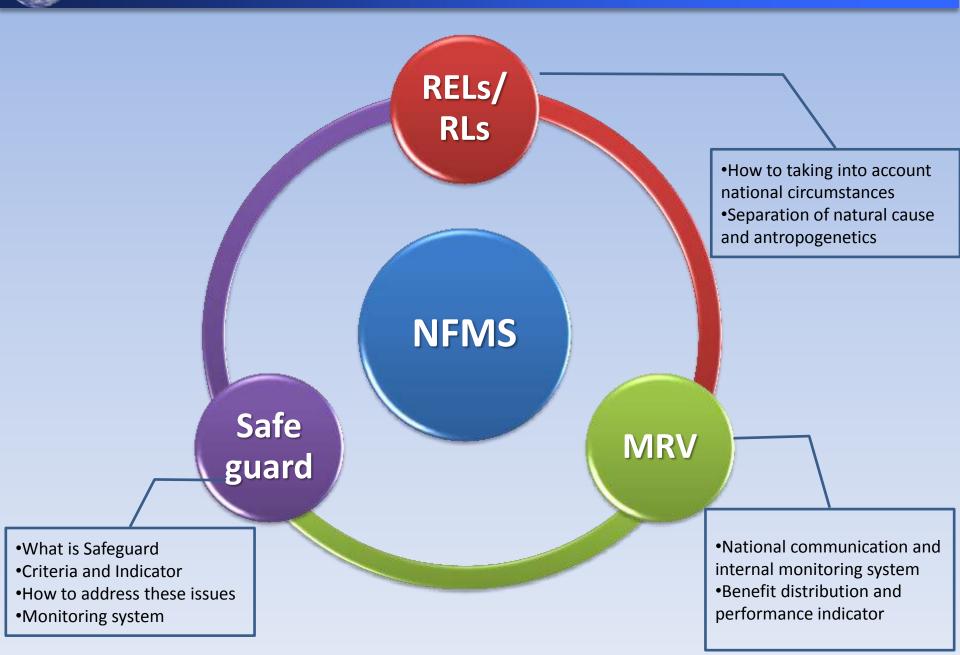
Technical options when estimation of carbon change (Methods of calculation)



Technical options when estimation of carbon change (Units of Aggregation)

Summary of interim REL/RL based on BAU

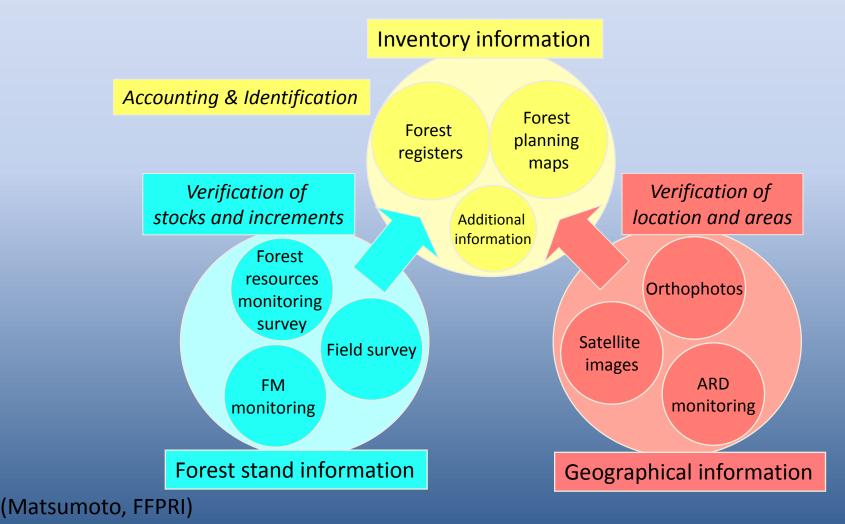
Total=-0.62 M CO2t (From2010 to 2015) ←Extrapolate by average model ⇒-0.124 M CO2t/year



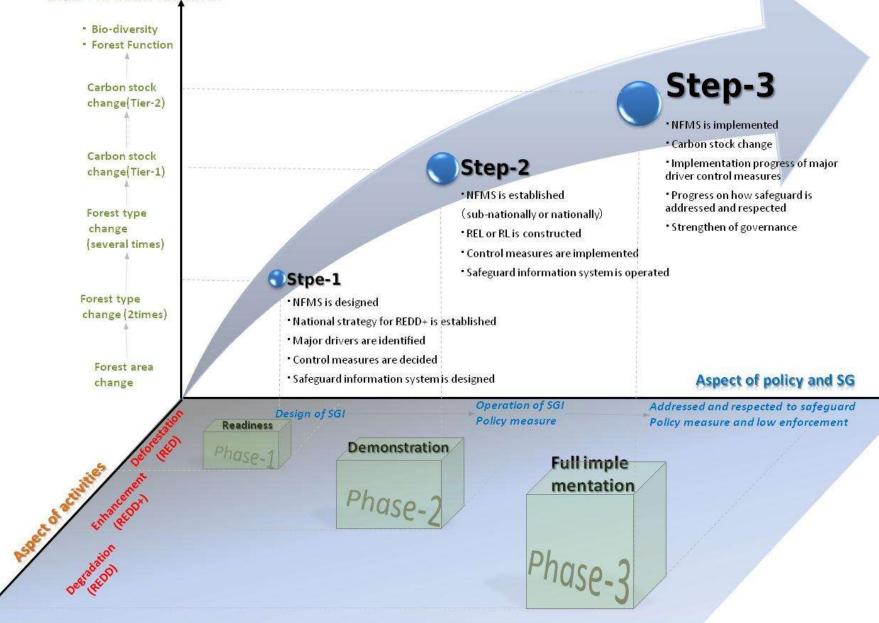
• Development of interim REL/RL in national scale (Case study in Vietnam)

 Stepwise approach for National Forest Monitoring System development

Three Contents of REDD+



Why we needs to collecting drivers and measures?


Conceptual Design of Forest GHG Accounting and Reporting System in JAPAN

- Accounting is based on forest registers and forest planning maps mainly
- Verification with independent stand and geographical information

Stepwise approach in development of NFMS

Aspect of forest resources

Thank you for attention

(Nghe An Province May, 2005, Nobumitsu MIYAZAKI)