CO₂ Capture and Storage (CCS): Costs and Economic Potential

Howard Herzog MIT Joint SBSTA/IPCC side-event COP11, Montreal, November 30, 2005

Capture and compression costs

In most CCS systems, the cost of capture (including compression) is the largest cost component

Capture Source	Capture Cost (US\$/tCO ₂ net captured)		
Power Plant	15 – 75		
Industry (high purity)	5 - 55		
H_2 , NH_3 , gas processing	5 - 55		
Industry - other	25 - 115		

Summary of CO₂ capture costs for new power plants

	NGCC	PC	IGCC	
CO ₂ reduction per kWh with capture	83-88%	81-88%	81-91%	
Increase in COE with capture (US¢/kWh)	1.2-2.4	1.8-3.4	0.9-2.2	
Increase in COE with capture	37-69%	42-66%	20-55%	
Cost of CO ₂ net captured (US\$/tCO ₂)	37-74	29-51	13-37	

Transport and storage costs

	Cost range	
Component	(US\$/tCO ₂ transported	
	or stored)	
Transportation (per 250 km)	1 - 8	
Geological Storage	0.5 – 8	
Ocean Storage	5 - 30	
Mineral Carbonation	50 - 100	

Cost of CO₂ pipeline transport

System costs

Application of CCS to electricity production, under 2002 conditions, is estimated to increase electricity generation costs by about 0.01 - 0.05 US dollars per kilowatt hour (US\$/kWh), depending on the fuel, the specific technology, the location, and the national circumstances.

CCS costs for new power plants using current technology

NGCC	PC	IGCC		
3 - 5	4 - 5	4 - 6		
1 - 3	2 - 5	1 - 3		
40-90	30-70	10-50		
1 - 2	1 - 3	0 - 2		
20-70	10-40	(-10)-30		
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)				
	3 - 5 1 - 3 40-90 1 - 2 20-70	3-5 $4-5$ $1-3$ $2-5$ $40-90$ $30-70$ $1-2$ $1-3$ $20-70$ $10-40$		

Economic potential of CCS

Most modelling as assessed in this report suggests that CCS systems begin to deploy at a significant level when CO_2 prices begin to reach approximately 25 - 30 US\$/tCO₂.

CCS as part of a mitigation portfolio

Most scenario studies: role of CCS increases over the course of the century

Economic potential

Economic potential of CCS

- Different baseline scenarios, 450 750 ppmv stabilization, cost assumptions
- 220 2,200 $GtCO_2$ cumulatively up to 2100
- 15 to 55% of the cumulative mitigation effort worldwide until 2100
- Cost reduction of stabilization: 30% or more

