

Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD): Implications for the Carbon Market

Pedro Piris-Cabezas

ENVIRONMENTAL DEFENSE FUND finding the ways that work

ENVIRONMENTAL DEFENSE FUND

METHODOLOGY

- Our model solves for an intertemporal equilibrium for the period 2012-2050. Two conditions are met in every year:
 - The market clears.
 - The present value of the international credit price is equal in every period (i.e. the price rises at the market rate of interest).
- Banking
 - Agents optimize abatement decisions across time by "overcomplying" in the early years.
 - Forest tons represent a large pool of relatively low-cost emissions reductions, and are a natural candidate for banking.
 - Right timing for REDD tons.

POLICY SCENARIOS FOR FOREST CARBON

- 1. Benchmark scenario. No forest carbon from developing countries allowed for compliance.
- 2. Core REDD scenario. Forest carbon credits allowed from reduced deforestation in tropical forest nations only.
 - REDD sensitivity scenarios. (a) Twice as many REDD credits available at any given price; (b) half as many REDD credits.
- 3. Core "All-Forestry" scenario. Forest carbon credits allowed from all forestry activities and countries.
 - "All-Forestry"sensitivity scenarios. (a) Twice as many forest carbon credits available at any given price; (b) half as many forest carbon credits.

ENVIRONMENTAL DEFENSE FUND

RESULTS

• What is the likely impact on GHG allowance prices of allowing international forest carbon credits?

• How many such credits are likely to be available at prevailing prices?

• What is the profile of those credits over time?

ENVIRONMENTAL DEFENSE FUND ALLOWANCE PRICES

• Robustness of alternative assumptions on the availability of forest carbon credits.

SCENARIO	2012	2020	2030	2040	2050
1 Baseline (no forest credits)	\$23	\$35	\$56	\$92	\$150
2 REDD-only core	\$21	\$30	\$49	\$80	\$131
3a REDD x2	\$18	\$27	\$43	\$70	\$115
3b REDD x1/2	\$22	\$32	\$53	\$86	\$140
4 All Forest core	\$16	\$24	\$40	\$65	\$105
5a All Forest x2	\$12	\$18	\$30	\$49	\$79
5b All Forest x1/2	\$20	\$29	\$48	\$78	\$127

ENVIRONMENTAL DEFENSE FUND **CONCLUSSIONS**Forest carbon credits from developing countries have considerable potential to help limit the cost of compliance. Forest carbon credits do not compromise the economic viability of critical low-carbon technologies. If all-forest carbon credits are allowed and become available within the next five years, the projected price would be \$16/tonne in the year 2012, rising to \$24/tonne in 2020 and \$40/tonne by 2030. If only REDD credits are allowed for compliance, the projected price would be \$21/tonne in the year 2012, rising to \$30/tonne in 2020 and \$49/tonne by 2030. The key qualitative conclusions are robust to alternative assumptions about the availability and cost of forest carbon credits. The ability to bank allowances is a crucial factor in sustaining prices at a moderate level