Infrastructure Adaptation Decision-Making Using the Triple Bottom Line Approach

David Lapp, FEC, P. Eng.

Canada

Secretariat, WFEO Committee on Engineering and the Environment Manager, Professional Practice, Engineers Canada

May 17, 2012

United Nations Framework Convention on Climate Change – Meeting SB 36 Bonn, Germany May 14-25, 2012

PIEVC

CVIIP engineerscanada

PIEVC Engineering Protocol The First Five Steps

Background

Necessity to adapt to climate change is clear

Professional obligations

solutions based on TBL criteria

- Insurance perspective
- Legal considerations and requirements
- Infrastructure adaptation decisions must be made on technical criteria, but also involve social, environmental and economic (triple-bottom-line) considerations
- To meet this need, Engineers Canada developed the Triple Bottom Line (TBL) decision support tool, an optional additional analysis tool within the PIEVC Engineering Protocol
- * TBL analysis \rightarrow develop and assess potential

Characteristics of TBL Analysis

- High level planning exercise and Decision Support System
- Structured methodology for debating issues, assess their importance to overall decision
- Utilizes professional judgment, meetings and workshop(s)
- Introduces TBL criteria explicitly into the decision making process
- Facilitates documentation of key steps
- Allows organizations to assess their progress continuously
- Promotes participant and organizational learning
- Knowledge enhances organizational resilience

TBL Analysis Methodology Goals and Policies Regulatory Framework Decision Solution Changes and Trends Context Organization Procedures 1st Step Climate Change Loads Adaptation **Scenarios** Vulnerable Components Factors Evaluation MFA Setup Matrix Weighting 2nd Step Schemes MFA Execution Carry forward one Recommendations **3rd Step** Further analysis two or more scenarios Follow-Up

TBL analysis employs multi-factor analysis (MFA) as core analysis framework

Ist step: Define alternative solutions to address infrastructure vulnerabilities

- Consider goals, policies, technical requirements, climate change issues
- * 2nd step: Define and execute multi-factor analysis
 - Introduce and evaluate TBL based factors, judge importance through weighting

^P^{age}step: Make recommendations

TBL Analysis – Development and Testing

- TBL Analysis methodology development initiated in summer 2010
- Development ended March 2012: 1st version available for use
- TBL analysis applied to test case, British Columbia Coquihalla Highway Culverts Study, January 2012
 - 50 km segment of the Coquihalla Highway,
 1 000 m elev. change in mountainous terrain

BC Coquihalla Highway Case Study

TBL analysis case study to find optimal solution for climate change induced vulnerabilities in large (>3m) culverts:

Increased frequency and magnitude of precipitation and storm events

✤ Erosion, culvert blockage, insufficient capacity → flows overtopping highway, potential failure

Alternatives for Comparison

Scenarios	Reactive Phase	Information Gathering	Preventative Upgrades
Business as usual	 Monitor deterioration Improve headwall anchoring Waterproof gaps in headwall and wingwall 	 Post-event data gathering Hydraulic assessments Observations tied to weather Inventories and as-built information 	• Do nothing;
Maintenance+	• Idem.	• Idem.	 Rebuild headwall and wingwall Install rip rap at inlet and outlet Construct sediment trap/basin before inlet
Relief Culvert	• Idem.	• Idem	Construct relief culvert below crown of existing culvert to accommodate additional flows
			<image/>

olmpact on user safety

○Injuries/fatali

oImpact on operator safety

TBL Evaluation Factors for Coquihalla Culverts

Social	Environment	Economy	
Loss of use – duration			
Loss of use – frequency	oGHGs	 Maintenance & Operation 	
Disaster performance	 Noise pollution 	 Replacement value of asset 	
Fee structure		 Cost of service per capita 	
Service interruptions	 Natural environment 	 Cost reliability 	
	○Soil quality	•Time	
Number of users affected	 Water quality 	 Project timeline 	
Loss of use	oVegetation	 Construction time 	
Service interruptions	oHabitat	○Loss of time	
	 Wildlife corridors 	○Service Life	
Social acceptability		 Level of service 	
Public perception	 Compatibility with regulatory 	 Flexibility of the solution 	
	frameworks/policies	•Property requirem	
Public health and safety			
Emergency services	 Resource Consumption 		

Material sourci

Weighting Schemes Tested

Factor	Group	Social Bias	Environment Bias	Economic Bias
Social	20	50	14.3	16
-Decreased use	6	15	4.3	4.8
Mpact on User Safety	14	35	10	11.2
Environme ntal	30	18.8	50	24
Water Quality	30	18.8	50	24
Economic	50	31.3	35.7	60
Capital costs	30	18.8	21.4	36
S S	5	3.1	3.6	6
Purepility	15	9.4	10.7	18
Total	100	100 Page 10	100	100

Scenario 1 – Maintenance+

Factor	Performance Indicator	Performance Evaluation	Comment
Social Factors	5		
Decreased use	Qualitative	No impact	Construction does not impact roadway. No impact on lane capacity expected
Impact on User Safety	Qualitative	No change	No changes to driver safety expected
Environmenta	I Factors		
Vater Qualit	Qualitative	Improved	Construction of sediment basin will temporarily decrease water quality, but can be managed with mitigation. Basin operation allows sediment deposition = improving water quality downstream
Economic Factors			
Capital costs	\$	\$80,000	\$25,000: reconstruction of headwall & wingwall; \$25,000: installation of rip rap at inlet & outlet; \$30,000: construction of sediment basin
M/O Costs	\$	\$350,000	<pre>\$25,000/10 yrs: maintenance of rip rap at inlet & outlet (50 yr timeframe, excl. \$25K for initial installation); \$5,000/yr for annual cleanout of sediment basin over and above maintenance contract (50 year timeframe);</pre>
Durability	Qualitative	Best	New sediment basin, headwall , wingwall construction is best case in terms of durability;

Scenario 1 – Maintenance+

Factor	Performance Indicator	Performance Evaluation	Comment
Social Factors			
Decreased use	Qualitative	5	Construction does not impact roadway. No impact on lane capacity expected
Impact on User Safety	Qualitative	5	No changes to driver safety expected
Environmenta	I Factors		
Vater Quality	Qualitative	5	Construction of sediment basin will temporarily decrease water quality, but can be managed with mitigation. Basin operation allows sediment deposition = improving water quality downstream
Economic Factors			
Capital costs	\$	3	\$25,000: reconstruction of headwall & wingwall; \$25,000: installation of rip rap at inlet & outlet; \$30,000: construction of sediment basin
M/O Costs	\$	1	<pre>\$25,000/10 yrs: maintenance of rip rap at inlet & outlet (50 yr timeframe, excl. \$25K for initial installation); \$5,000/yr for annual cleanout of sediment basin over and above maintenance contract (50 year timeframe);</pre>
Durability	Qualitative	5	New sediment basin, headwall, wingwall construction is best case in terms of durability;

Weighting Scheme		Sensitivity Testing			
		Group	Social Bias	Environment Bias	Economic Bias
Scena	rios				
Busin as Usi	ess Ial	62	76	50	64
Mainte e+	enanc	84	90	89	81
Relief Culve	rt	30	26	27	32
Rank					
Busine Usual	ess as	2	2	2	2
Mainte	enanc	Not a des 1	rirable solution in	n the face of climate 1	e change 1
Relief Culver	t	3	3	3	3

-

Sec.

Applications and Further Work

- TBL analysis has both climate change and non-climate change related applications
- Excellent for high-level screening, and planning decisions that must balance multiple criteria
- Ability to engage multiple stakeholders in consultative process
- Application to strategic level planning decisions, as well as tactical solutions
- Further refinement to apply this approach to infrastructure adaptation decision-making Learn by Doing!
- Available as part of the PIEVC Engineering Protocol

Questions

For more information on the PIEVC Engineering Protocol and the Triple Bottom Line Module contact:

David Lapp, P.Eng.

Manager, Professional Practice

Engineers Canada

david.lapp@engineerscanada.ca