



ألتىر

#### CGIAR – CCAFS – ILRI COP22 Side event: November 7<sup>th</sup>, 2016 Walter Oyhantçabal Director of the Sustainability and Climate Change Unit Ministry of Livestock, Agriculture and Fishery - Uruguay

 Uruguay is a livestock country with an economy strongly based on the agricultural sector (70% of all exports).



# On the path of growth

### Uruguay has 3.4 million inhabitants and feeds 32 millions



### Context: simultaneous targets have to be achieved

- 1. More food.
- 2. Less environmental footprint.
- 3. Mitigation and adaptation of/to CC.



# Emisiones de Gases de Efecto Invernadero directo – por sector (2010)

% emisiones



#### MAIN SOURCES OF EMISSIONS



### Uruguay's iNDC: proposed mitigation targets in terms of emissions intensity in the beef sector (per kg beef)

|                  | 2030 vs. 1990<br>own effort | 2030 vs 1990<br>with MOI | 2010 vs 1990 |
|------------------|-----------------------------|--------------------------|--------------|
| CH <sub>4</sub>  | 33% less                    | 46% less                 | 23% less     |
| N <sub>2</sub> O | 31% less                    | 41% less                 | 28% less     |

Q1: Uruguay experiences in improving activity data, emission factors and coordination to best capture mitigation impacts

- Innovations used to get **activity data** to capture mitigation in the livestock sector.
- Data sources that already existed? New data collected?
- Do you use production system-level approaches?

## National Livestock Information System







#### High quality livestock statistics system

# 100% traceability of the cattle herd, with electronic and visual tags



# Annual electronic sword declararation by all farmers

• Stock: number of heads by category = AD

Land use Diet, as basis for estimating sub-national EF

### **Emissions = AD x EF**

# BEEF HERD COMPOSITION (annual electronic sword declaration)

| Departamen<br>to / Seccion<br>policial | DICOSE    | Bulls | Breeding<br>cows<br>(mated) | Cows for<br>fattening | Steers oldier<br>than 3 years | Steers with<br>2-3 years | Steers with<br>1-2 years | Heifers<br>oldier than 2 | Heifers with<br>1-2 years | Male and<br>female | Total<br>number of<br>animals | Mortality | Human<br>consumption |
|----------------------------------------|-----------|-------|-----------------------------|-----------------------|-------------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------|-------------------------------|-----------|----------------------|
| 0308                                   | 030800257 | 16    | 453                         | 54                    | 0                             | 0                        | 100                      | 139                      | 106                       | 229                | 1097                          | 61        | 0                    |
| 0308                                   | 030800338 | 5     | 173                         | 0                     | 30                            | 84                       | 33                       | 28                       | 25                        | 19                 | 397                           | 10        | 0                    |
| 0308                                   | 030800648 | 20    | 670                         | 0                     | 0                             | 0                        | 6                        | 77                       | 104                       | 305                | 1182                          | 12        | 0                    |
| 0308                                   | 030800699 | 3     | 98                          | 0                     | 0                             | 0                        | 0                        | 2                        | 29                        | 28                 | 160                           | 0         | 0                    |
| 0308                                   | 030800982 | 1     | 26                          | 0                     | 0                             | 0                        | 0                        | 0                        | 2                         | 46                 | 75                            | 3         | 0                    |
| 0308                                   | 030801121 | 7     | 187                         | 0                     | 10                            | 12                       | 15                       | 41                       | 51                        | 113                | 436                           | 1         | 0                    |
| 0308                                   | 030801288 | 0     | 4                           | 0                     | 1                             | 1                        | 1                        | 3                        | 0                         | 3                  | 13                            | 0         | 0                    |
| 0308                                   | 030801504 | 58    | 771                         | 0                     | 47                            | 23                       | 40                       | 9                        | 168                       | 543                | 1659                          | 45        | 0                    |
| 0308                                   | 030802624 | 1     | 79                          | 0                     | 11                            | 15                       | 25                       | 0                        | 0                         | 56                 | 187                           | 0         | 0                    |
| 0308                                   | 030803043 | 26    | 956                         | 43                    | 0                             | 75                       | 460                      | 0                        | 306                       | 695                | 2561                          | 18        | 0                    |

### DISTRIBUTION OF BEEF CATTLE HERD AND PASTURE RESOURCES BY ECOREGION



BALK

SERR

LLANG

CRITIN

ARENE

LITCHS

514010

Uruguay beef cattle herd: 10.8 million head

|                                       |                           | SHARE OF AN                  | SHARE OF GRASSLAND |                |           |            |                      |                    |  |
|---------------------------------------|---------------------------|------------------------------|--------------------|----------------|-----------|------------|----------------------|--------------------|--|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NUMBER OF<br>CATTLE FARMS | NATIONAL CATTLE<br>INVENTORY | MEEDING            | COMPLETE CYCLE | FATTENING | TOTAL AREA | NATURAL<br>GRASSLAND | OTHER<br>GRASSLAND |  |
|                                       |                           |                              | *6                 |                |           | Million Ha | *                    |                    |  |
| 1120                                  | 6321<br>(15%)             | 27%                          | 28                 | 28             | 27        | 4.1        | 91                   | 5                  |  |
| AAS DEL E                             | 4776<br>(11%)             | 10%                          | 12                 | 9              | 8         | 3.4        | 84                   | .9                 |  |
| URAS DEL E                            | 1791<br>(4%)              | 5%                           | 6                  | 5              | 4         | 0.72       | 80                   | 14                 |  |
| ALINO Y LOMADAS                       | 9903<br>(23%)             | 24%                          | 24                 | 22             | 28        | 3.3        | 68                   | 22                 |  |
| ISCAS Y NE                            | 6212<br>(15%)             | 18%                          | 17                 | 22             | 19        | 2,4        | 79                   | 12                 |  |
| ual.                                  | 4505<br>(11%)             | 10%                          | 9                  | 10             | 17        | 1,7        | 52                   | 18                 |  |
| ECHEBO                                | 9057<br>(21%)             | 5%                           | 4                  | 4              | 10        | 0.72       | 48                   | 38                 |  |



What innovations have you used to get emission factors for low emissions production systems?

# IPCC Tier 2 method for Enteric fermentation and N<sub>2</sub>O

- Using spatially disaggregated information on cattle herd by category and diet quality and composition.
- C-S EF for enteric fermentation, including Tier 2 MCF
- Tier 2 N<sub>2</sub>O from manure on grasslands
- Use of FAOSTAT tools for QA/QC
- GLEAM model under calibration



# Uruguay is working with FAO to develop and validate Tier 2 models (GLEAM)



 GLEAM is a modelling framework that simulates the environmental impacts of the livestock sector. It represents the biophysical processes and activities along livestock production chains under a life cycle assessment approach.

#### URUGUAY CAN CALCULATE AVERAGE WEIGHTED EF FACTORS FOR ENTERIC METHANE (BEEF CATTLE) KG CH4/HEAD/YEAR, BY CATEGORY AND TYPE OF PODUCTION SYSTEM,

| Category                  | Production System                     | Enteric, CH4     |  |  |  |
|---------------------------|---------------------------------------|------------------|--|--|--|
|                           |                                       | Kg CH4.head.year |  |  |  |
|                           | Cow-calf                              | 97               |  |  |  |
| Breeding females          | Complete cycle 1                      | 97               |  |  |  |
|                           | Complete cycle 2                      | 98               |  |  |  |
|                           | Cow-calf                              | 95               |  |  |  |
| Breeding males            | Complete cycle 1                      | 95               |  |  |  |
|                           | Complete cycle 2                      | 95               |  |  |  |
|                           | Cow-calf                              | 47               |  |  |  |
| Replacement heifers       | Complete cycle 1                      | 47               |  |  |  |
|                           | Complete cycle 2                      | 47               |  |  |  |
|                           | Cow-calf                              | 69               |  |  |  |
| Replacement males         | Complete cycle 1                      | 69               |  |  |  |
|                           | Complete cycle 2                      | 70               |  |  |  |
|                           | Complete cycle 1                      | 73               |  |  |  |
| Lisifors for fattoning    | Complete cycle 2                      | 74               |  |  |  |
| Heifers for fattening     | Rearing phase                         | 32               |  |  |  |
|                           | Finishing phase on natural grassland  | 63               |  |  |  |
|                           | Complete cycle 1                      | 76               |  |  |  |
| Staars 2.2 vaars          | Complete cycle 2                      | 76               |  |  |  |
| Steers 2-3 years          | Rearing phase                         | 38               |  |  |  |
|                           | Finishing phase on improved grassland | 59               |  |  |  |
|                           | Complete cycle 1                      | 85               |  |  |  |
| Steers older than 3 years | Complete cycle 2                      | 85               |  |  |  |
| Steers older than 5 years | Rearing phase                         | 38               |  |  |  |
|                           | Finishing phase on natural grassland  | 75               |  |  |  |

### CONTRIBUTION OF PRODUCTION PHASES TO ENTERIC CH4 EMISSIONS



#### **SUMMARY OF FEATURES OF BEEF EMISSIONS**

- Main sources: enteric CH4 and nitrous oxide from manure
- Pasture-based systems (cow-calf and complete cycle systems) contribute bulk of emissions
- $\circ$   $\,$  Key drivers of emissions and emission intensity
  - Breeding system
    - $\checkmark$  Inadequate and poor nutrition: quality, seasonality
    - ✓ Poor reproductive efficiency: low fertility, low weaning rates, high AFC
    - $\checkmark$  Large breeding overhead
    - $\checkmark$  Low adoption of improved management practices
  - Rearing and finishing
    - ✓ Long and inefficient rearing and finishing periods
- Large variability of emission intensity between and within systems

Q 3: How does Uruguay coordinates collection of data? Aggregating across local level administration? Coordinating projects and national efforts? Across universities, private sector companies and the public sector/government?

# Goals for the climate smart project with GEF-FAO in Uruguay

• To mitigate climate change while increasing productivity and resilience.

 Prepare a NAMA and develop MRV tools to scaleup.



# REDUCING ENTERIC METHANE EMISSIONS INTENSITY THROUGH IMPROVED PRODUCTION EFFICIENCY AND PRODUTIVITY OF CATTLE IN BEEF PRODUCTION SYSTEMS IN URUGUAY

### **PRODUCTIVITY GAP**



### SELECTED INTERVENTIONS FOR URUGUAY

#### 1. Increasing forage

**allowance:** 90% herd is managed on natural pastures

# 2. Inter-seeding pasture with grass legumes

3. Sowing grass legume mixtures and annual fodder crops

# 4. Strategic feeding & supplementation

- winter and summer supplementation
- Dietary flushing

5. Controlled breeding: defined mating season

#### 6. Genetics:

 Heterosis, new breeds, genetic improvement better management of forage resources by matching available forage resources to animal requirements

improving quantity and quality of the basal diet

- native pastures over sown with legumes to increase pasture yield and quality

#### overcome winter and summer deficits

- address energy and protein constraints during periods of low availability and quality
- timing of mating to match nutritional requirements of herd to the seasonal pasture supply pattern

genetic management to improve reproductive traits

#### CONCLUSIONS

- A number of practices are available which have potential to reduce EI relative to baseline practices.
- Potential to reduce emission intensity ranges from 23% 47% of the baseline emissions.
  - ✓ Aligns with Uruguay's INDC commitment: reduction of emission intensity by 33%
- Strong synergies with gains in productivity gains and profitability
- Despite this, rate of adoption of these technologies is still at low
  - need to quantify other benefits: carbon sequestration, increased grassland productivity, biodiversity, increased resilience
  - testing on the ground required: to better understand barriers to uptake, costs of implementation,
  - agro-technologies are highly location specific, technology targeting in terms of ecological conditions, socio-economic condition of farmers

