

The Global Climate Observing System

GCOS Secretariat, WMO

environment

GCOS

GCOS supports

observations and

production of climate

the data records that

underpin climate

service delivery, e.g. for

weather, hydrology,

ocean cryosphere and

biosphere.

Observation, Infrastructure & Information Systems

Weather, Climate, Water and related environmental Services and Applications

Sensing

• Observation of the Earth System

Network and system operators: e.g. national meteorological services, satellite agencies

Data Records

- Preparation of Climate
- Data records
- Archiving,
- Reanalysis,
- Production of long datasets
- Climate projections

Data Managers, Modeler, Re-Analyses (ECMFW, NCEP, DWD, JMA, Research, data Providers, etc.)

Delivery of Services

 Delivery of targeted information for specific applications or to inform decisions

Service companies & agencies, (Copernicus, ESRI, Google Maps, national meteorological services)

Decision Making and Implementation

• Implement actions based on the information

National authorities, insurance companies, private sector

Feedback on user needs and gaps in observational and data systems

GCOS

- Identifies the needs for climate monitoring Essential Climate Variables (ECV)
- Defines the monitoring requirements
- Promotes these requirements
- Monitors and reports on the status of the observing system
- Suggests plans and improvements

The Global Climate Monitoring System

- Is a system of systems
- Is based on existing observation networks
 - WMO for meteorology, water and cryosphere
 - IOC and GOOS for the oceans
 - CEOS/CGMS Joint WGClimate for satellite observations
 - A range of terrestrial networks for other ECV e.g. glaciers, permafrost, soil carbon.

Weather

Climate Monitoring covers the whole climate system

Cryosphere

osphere

Not just weather!

Hydrology

Oceans

Atmospheric Composition

Atmosphere		-				
		Physical - Surface		Physical - subsurface	Biogeochemical	
Surface		•Ocean surface heat flux		 Subsurface currents 	 Inorganic carbon 	
 Precipitation 		•Sea ice		 Subsurface salinity 	•Nitrous oxide	
•Pressure	L E	•Sea level		 Subsurface temperature 	Nutrients	
 Radiation budget 	Ocean	•Sea state			•Ocean colour	
•Temperature	Õ	•Sea surface currents		Biological/ecosystems	•Oxygen	
•Water vapour		•Sea surface salinity			 Transient tracers 	
 Wind speed and direction 		 Sea surface stress 		 Marine habitat properties Plankton 		
Upper-air		•Sea surface temperature		FIGHTCOT		
•Cloud properties						
•Earth radiation budget				Hydrosphere	Biosphere	
•Lightning		Essential		•Groundwater	•Above-ground biomass	
•Temperature				•Lakes	•Albedo	
•Water vapour		Climate		 River discharge 	 Evaporation from land 	
 Wind speed and direction 		.,		Cryosphere	•Fire	
Atmospheric Composition		Variables		•Glaciers	 Fraction of absorbed 	
•Aerosol and ozone precursors			Land	•Ice sheets and ice shelves	photosynthetically active	
•Aerosols properties			La	•Permafrost	radiation (FAPAR)	
•Carbon dioxide, methane and				•Snow	 Land cover Leaf area index 	
other greenhouse gases		ECV		A	•Soil carbon	
•Ozone				Anthroposphere	•Soil moisture	
				 Anthropogenic Greenhouse gas fluxes 	•Land surface temperature	

GCOS COS

UN () environment •Anthropogenic water use

Public Information: Agreed Climate Indicators

	<u>Temperature</u> and Energy	Atmospheric Composition	<u>Ocean</u>	<u>Cryosphere</u>	<u>Biosphere</u>
bal ators	Surface Temperature	Atmospheric CO ₂	Ocean Acidification	Glacier Mass Balance	
Global Indicators	Ocean Heat		Sea Level	Arctic and Antarctic Sea Ice	
Indicators under development	Heat Waves		Heavy Precipitation Droughts		Ecosystem change
Supplementary Indicators	Top of atmosphere energy balance	Methane N ₂ O Halocarbon GHG		Snow extent	
			<u>Water</u>		

Examples of remote sensing of responses to climate changes

ECV IN BRIEF

Domain: Terrestrial Subdomain: Biology Scientific Area: Carbon Cycle and other GHGs Products: Maps of above-ground biomass

Vegetation biomass is a crucial ecological variable for understanding the evolution and potential future changes of the climate system. Photosynthesis withdraws CO₂ from the atmosphere and stores carbon in vegetation in an amount comparable to that of atmospheric carbon. Vegetation systems have the potential either to sequester more carbon in the future or to contribute as an even larger source. Depending on the quantity of biomass, vegetation cover can have a direct influence on local, regional and even global climate, particularly on air temperature and water vapour.

STANDARDS/

REFERENCES

STABILITY

	CV Products			
		1.0		REQUIREMENTS
PRODUCT	DEFINITION	FREQUENCY	RESOLUTION	REQUIRED MEASUREMENT UNCERTAINTY
	a design of the second second			2001

MAPS OF ABOVE- GROUND BIOMASS	ххх	Annual	500m-1km (based on satellite observations of 100-200m)	< 20% error for biomass values > 50 t/ha, and 10 t/ha for biomass values ≤ 50 t/ha	10%	No agreed standards but see: GOFC- GOLD (2015b); GFOI (2013)
-------------------------------------	-----	--------	--	---	-----	--

Selected Data Sources

- Copernicus Global Land Service providing bio-geophysical products of global land surface http://land.copernicus.vgt.vito.be/PDF/portal/Application.html#Hon
- National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI
 - https://lpvs.gsfc.nasa.gov/producers2.php?topic=SurfRad
- Copernicus Climate Change Service (C3S), European Centre for Medium-Range Weather Forecasts (ECMWF) . http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/

ECV IN BRIEF

Domain: Terrestrial Subdomain: Human Use of Natural Resources Scientific Area: Biosphere ECV Stewards: Greet Maenhout Products: Emissions from fossil fuel use, industry, agriculture and waste

sectors;

land categories:

Emissions/ removals by IPCC

Estimated fluxes by inversions

Estimated fluxes by inversions

concentrations to monitor point

of observed atmospheric

of observed atmospheric

composition - national;

Hi-res CO₂ column

composition - continental;

Anthropogenic Greenhouse Gas Emissions

Global anthropogenic emissions of Greenhouse gases (CO₂, CH₄, N₂O and F-gases) continue to be emitted at an annual rate that is not yet significantly decreasing. The global warming potential of each of the greenhouse gases and their long residence time in the atmosphere are causing increased surface temperature and climate change. The scientific community illustrated with inverse models and data assimilation how consistent the reported inventories and the atmospheric observations are, which is taken up also in few national inventory reports (e.g. UK, Switzerland, Australia).

ECV Product¹

sources

۲

www.gcos.wmo.int

WMO

	DEFINITION	REQUIREMENTS				
PRODUCT		FREQ.	RES.	REQ. MEAS. UNCERT.	STAB.	STANDARDS/ REFERENCES
Emissions from fossil fuel use, industry, agriculture and waste sectors	Anthropogenic emissions according to IPCC guidelines	Annual	By country and sector	Globally 5%; Nationally 10%	2	IPCC (2006); IPCC (2013)

¹ Current Products and Requirements as in the Implementation Plan 2016 (GCOS-200). GCOS is reviewing and will update the requirements until 2022. More information on: gcos.wmo.int and climatedata.wmo.int.

-

@gcos_un

in collaboration with

 \bowtie

gcos@wmo.int

UN 🏵

Data Sources²

- United Nations Framework Convention on Climate Change inventory data http://wgms.ch/ http://di.unfccc.int/time_series
- Emissions Database for Global Atmospheric Research (Edgar) http://edgar.jrc.ec.europa.eu/s/
- Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) http://db.cger.nies.go.jp/dataset/ODIAC/
- Carbon Dioxide Information Analysis Center https://cdiac.ess-dive.lbl.gov/
- The Global Carbon Project (GCP)
- https://www.globalcarbonproject.org/
- Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) http://db.cger.nies.go.jp/dataset/ODIAC/
- Community Emissions Data System (CEDS) http://www.globalchange.umd.edu/ceds/
- FLUXNET https://fluxnet.ornl.gov/fluxnetdb

Global CO₂ Emissions

Figure: Gridded total CO2 emissions of EDGARv4.3.2 from anthropogenic sources excluding the land use, land-use change and forestry sectors for 2012 of Janssens-Maenhout et al. (2019).

² This list provides sources for openly accessible data sets with worldwide coverage for which metadata is available. It is curated by the respective GCOS ECV Steward(s). The list does not claim to be complete. Anyone with a suitable dataset who would like it to be added to this list should contact GCOS.

https://gcos.wmo.int/en/essential-climate-variables/ecv-factsheets

Public Review of ECV requirements January – March 2020 gcos.wmo.int

Monitoring the state of climate monitoring

Surface Observations used by ECMWF in their models

- Sparse data coverage over some areas, especially Africa
- Other modelling centres show similar patterns
- This leads to poorer forecasts and projections in these areas
- This also contributes to lower skill of forecasts globally

Ocean Observing System – IOC and GOOS

- Climate observations of the upper oceans are currently fairly well covered
- ARGO buoys reach 88% of target density and drifters 80% (with gaps in polar and coastal regions), while there are relatively few observations below 2000m.
- New technologies are becoming available especially for biological parameters and for below 2000m
- However, the funding is very fragile with sustainable funding for only 28% of ocean observations, and with 52% requiring renewed funding within 2-3 years.

Satellite Based Climate Monitoring

- CEOS and CGMS coordinate the monitoring of the climate from space.
- Their ECV Inventory lists the climate data records available and planned and directs users to the datasets.
- Plot shows the number of existing (blue) and planned satellite-based climate data records

Existing Planned

GCOS works closely with the UNFCCC

For example:

1997	Decision 8/CP.3	Development of observational networks of the climate system
1998	Decision 14/CP.4	Research and systematic observation
2003	Decision 11/CP.9	Global observing systems for climate
2009	Decision 9/CP.15	Systematic climate observations
2016	Decision 19/CP.22	Implementation of the global observing system for climate

Climate observations also SUPPORT

Energy & Temperature
Other Physical Properties
Carbon Cycle and other GHGs
Hydrosphere
Snow & Ice
Biosphere
Human Resource Use

