

PI "Center for Energy Research"

Climate mitigation and energy options:

Preliminary model results for Kazakhstan

Yerbol Sarbassov

Durban, 2011

Content

- 1. GHG emissions of Kazakhstan
- 2. Impacts of climate change in Kazakhstan
- 3. Project "Modeling of Kazakhstan' energy system"
 - TIMES-Kazakhstan modeling tool at Nazarbayev University
 - Reclassified fuel energy balance of Kazakhstan for 2010
- 4. Preliminary results of modeling:
 - Total primary energy supply
 - Total final energy consumption
 - CO2 emissions scenarios
- 5. Future plans of the modeling group at NU

GHG emissions of Kazakhstan

- 88% Energy sector
- 5.5% Industrial processes
- 4.6% Agriculture
- 1.9% Waste

Dynamics of total national emissions in the Kazakhstan, 1990-2008 by sources, (Source: National Inventories, KazNIIEK, 2010)

Kazakhstan – is the largest emitter in CA, takes third place in CIS after Russia and Ukraine (CO2 emissions per capita – 13.6 tonnes/capita)

Impacts of climate change in Kazakhstan

- Average annual temperature of air increased in average by 0.31°C every ten years
- Glaciers melting (by 0.8% per year by area)
- Increase of mudflows and droughts
- Displacement of wetting boundaries

Declared decisions under Kyoto and post-Kyoto

- Kazakhstan ratified Kyoto protocol in March 2009
- Commitments for Post-Kyoto protocol are to reduce GHG emissions:
 - by 15% by 2020
 - by 25% by 2050 from the levels of the base year 1990

The TIMES-Kazakhstan modeling tool to evaluate different mitigation options

Objectives

- Develop model of the energy technologies system of Kazakhstan
- Assist policy-makers in decision making in developing low carbon economy
- Predict energy production, consumption, energy prices, emissions, technology investments, total system cost on a long-term horizon for different scenarios
- Capacity building in energy systems modeling
- Use a methodology available in many other countries

Implementation stages

Reclassified fuel-energy balance of Kazakhstan for 2010, Mtoe

	Coal	Crude	Oil	Gas	Biomass	Elect-	Heat	Total
		Oil	Prod.		& Waste	ricity		
Primary production	53.66	79.92	0.00	25.11	1.34	0.72	0.00	160.75
Imports	0.63	5.98	1.64	2.92	0.00	0.25	0.00	11.42
Exports	-15.23	-68.70	-9.58	-5.17	0.00	-0.15	0.00	-98.83
Withdrawal from stock	-0.95	-0.97	-0.25	-0.01	0.00	0.00	0.00	-2.19
Total primary energy supply	38.11	16.22	-8.19	22.85	1.34	0.82	0.00	71.14
Energy transformations	-26.68	-15.50	19.62	-8.30	-0.27	6.39	9.61	-15.14
Plants	-24.40	0.00	-0.43	-4.15	0.00	6.39	9.61	-12.98
Oil refineries	0.00	-15.50	15.90	0.00	0.00	0.00	0.00	0.39
Coal transformation	-2.28	0.00	0.00	0.00	0.00	0.00	0.00	-2.28
Other transf + stat. difference	0.00	0.00	4.16	-4.16	-0.27	0.00	0.00	-0.27
Energy industry own use	-1.02	0.00	-2.37	-10.43	0.00	-1.76	-2.17	-17.75
Losses	-0.99	-0.72	-0.23	-0.88	0.00	-0.57	-1.06	-4.44
Final consumption	9.42	0.00	8.83	3.24	1.07	4.88	6.38	33.82
Industry	4.08	0.00	1.81	0.83	0.00	3.14	2.35	12.20
Transport	0.01	0.00	5.89	0.72	0.00	0.11	0.02	6.74
Residential	3.73	0.00	0.24	1.04	0.99	0.97	2.71	9.68
Commercial, public services	1.24	0.00	0.15	0.60	0.06	0.61	1.10	3.76
Agriculture, forestry & fish.	0.21	0.00	0.47	0.02	0.01	0.05	0.21	0.97
Non-energy use	0.14	0.00	0.28	0.03	0.00	0.00	0.00	0.46

Efficiency of some power plants of Kazakhstan

	Name of the plants	Type of fuel	Installed capacity, MW	Efficiency, %
1	LTD «Astana Power»	Coal	360	18
2	TOO «Corporation Kazakhmys» GRES	Coal	608	20
3	JSC "Aktobe CHP"	Gas	103	16
4	JSC «Ust-Kamenogorskaya CHP»	Coal	241,5	21
5	Ekibastyz GRES-2	Coal	1000	27
6	LTD "МАЭК"	Gas	1342	24
7	JSC "Zhayukteploenergy"	Gas	58,5	15
8	JSC «3-Energycenter CHP»	Gas	160	25
9	GCC «Kzyl-Orda CHP»	Gas	113	26

GRES – Governmental regional electrical power station GCC – Governmental communal company

TIMES MODEL GENERATOR

- TIMES is the technical and economical tool of modeling, that predicts possible future development in consistent with different measurements of TIMES.
- It allows us to organize information of the system
- Reduces complex systems in an manageable form
- Developed by energy technology systems analysis program in accordance with International Energy Agency IEA-ETSAP
- 4 types of input data: the demand for energy services, primary potential energy, policies, description of group technologies

Representation of public heat and electricity in the model

From a static balance to a dynamic model

3 scenarios built:

Scenarios	Annual growth of
	GDP, %
Business as usual (BAU)	
Scenarios without any constraints to GHG emissions, at a minimum cost	
of the energy system.	2011-2020: 4.2%
CO ₂ -15%	
Scenario considers the implementation of voluntary commitments, taken	2021-2030: 3.2%
by Republic of Kazakhstan within the Copenhagen agreement: reduction	
of GHG emissions to 15 % by 2020 (233 mln tons of CO_2 equivalent) and	2031-2040: 2.5%
25 % by 2050 (206 mln. tons of CO_2 equivalent), in relation to the level of	
the base year 1992. $CO = 20\%$	20.41 20.50, 20/
$CO_2 - 20 / 0$	2041-2030: 2%
Scenario with strong constraints of GHG emissions: 20 % by 2020 (219	
mln. ton of CO_2 equivalent) and 50 % by 2050 (137 mln. tons of CO_2	
equivalent) in relation to the base year 1992.	

Preliminary results: Total primary energy supply, PJ

Preliminary results: Total primary energy supply by commodity, PJ

- <u>BAU</u> the fastest growing consumption sector is the transport consumption that increases to 1.5 times and industry to1.3 times
- <u>CO2-15%</u> the residential sector contributes mostly to CO2 reduction in the consumption side: 127 PJ decrease over 2009-2030. In 2030, for space heating: heat pumps (41%) and NGA burners (32%) as well as more efficient coal burners (9%), heat exchangers (10%) will be used. For water heating NGA and Solar water heaters will take place.
 - In CO2-20% the decrease in the residential sector accounts for 155PJ over 2009-2030. In 2030, for space heating next technologies will be used 49% heat pumps, 30 % gas boilers, 11 % heat exchangers.

Preliminary results: Total final consumption by sector, PJ

NAZARBAYEV

UNIVERSITY

Preliminary results: CO_2 emissions scenarios, thousand. tons of CO_2 equivalent

BAU scenario the GHG emissions increase to 16% by 2030 with regards to 2009

Future plans of the modeling group at NU

Thank you for attention!

Yerbol Sarbassov <u>Ysarbassov@nu.edu.kz</u> +77172706456