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Preface 
 

The Paris Agreement, which entered into force on November 4, 2016, is the world’s first 

framework to deal with climate change through both “mitigation” measures to reduce greenhouse 

gas (GHG) emissions and “adaptation” to the impacts of climate change. All nations started to take 

action to comply with the Paris Agreement, which has been ratified by 159 countries including 

developed and developing countries and the European Union as of September 2017. 

The Paris Agreement defines a mechanism of “global stocktake” that all nations set the GHG 

reduction targets, report each progress, and assess the collective progress towards achieving the 

goals every five years after 2020. 

Each country is required to report its national GHG emissions inventory under a highly 

transparent framework. To secure the transparency of the inventory, a system is necessary to 

compare and evaluate the inventories by some independent ways. One of the ways is a GHG 

observation method using satellite remote sensing techniques that Japan and other countries are 

working on. 

In Japan, under a joint project by the Ministry of the Environment (MOE), the National 

Institute for Environmental Studies (NIES), and the Japan Aerospace Exploration Agency (JAXA), 

the Greenhouse gases Observing SATellite (GOSAT) “IBUKI” was launched as the world’s first 

satellite dedicated to monitoring greenhouse gases in January 2009. The satellite has been observing 

global GHGs such as carbon dioxide (CO2) and methane (CH4) and monitoring their fluctuations 

for nine years since its launch. 

With the “IBUKI” observations and the full use of ground-based and aircraft observations and 

modeling techniques, we have recently found the following trends for the first time in the world: 

whole-atmosphere monthly mean CO2 concentrations reaching 406 ppm and CH4 recording 1824 

ppb in January 2018 with an annual increase with seasonal variations. In addition, we released the 

estimates of anthropogenic CO2 and CH4 emissions, which marked the first step towards utilizing 

the “IBUKI” series for environmental policy. 

These observation outcomes leveraging the advantages of the satellite are contributing to the 

precise predictions of climate change. In addition, they become basic information for monitoring 

domestic and international efforts to reduce GHG emissions. We have been developing a successor 

“IBUKI-2” (GOSAT-2) to be launched in FY2018 and striving to advance techniques to assess and 

validate GHG emissions in large cities and large-scale emission sources using the IBUKI-2 

observations. 

On the other hand, in the United States, NASA launched the Orbiting Carbon Observatory 2 

(OCO-2) in July 2014 and has been in operation. This satellite aims to characterize CO2 sources and 

sinks on regional scales and quantify CO2 variability over the seasonal cycles. The project teams of 
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OCO-2, GOSAT, and GOSAT-2 have been enforcing cooperative relationships from an early stage 

and making an effort to improve the accuracy of the data products by cross-calibration and 

validation under the Memorandum of Understanding among MOE, JAXA, NIES, and NASA, 

which was signed in March 2015. 

In December 2017, JAXA and NIES made collaboration agreements with the European Space 

Agency (ESA), with the Centre National D’Etudes Spatiales (CNES), and with the German 

Aerospace Center (DLR). These agreements aim to increase the reliability of satellite GHG data and 

achieve its uniformity by cross-calibration and validation among the data from GOSAT, GOSAT-2, 

and GHG observing satellites operated or to be launched by European agencies. 

To utilize these space-based GHG measurements for the system of estimating and evaluating 

each nation’s GHG emissions, there are many possible challenges because innovative techniques 

are necessary. For example, one of the issues is technical assistance for inventory compilers in areas 

not having inventory data with high quality to compile and evaluate the GHG emissions inventories. 

It is necessary that Japan will cooperate internationally not only in a technical aspect such as 

analyzing satellite remote sensing data, but also in capacity building activities including training 

courses for inventory compilers through association with international organizations and 

development agencies. 

We hope that this guidebook will be a good opportunity to introduce remote sensing techniques 

by GHG observation satellites as one of the methods for estimating and evaluating each nation’s 

GHG emissions. As a result, we also hope that this guidebook will lead to taking further measures 

against global warming. 

 

Masanobu Kimura 

Director 

Research and Information Office 

Global Environment Bureau 

Ministry of the Environment Japan 
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About this guidebook 
 

This guidebook, “A Guidebook on the Use of Satellite Greenhouse Gases Observation Data to 

Evaluate and Improve Greenhouse Gas Emission Inventories” (hereinafter referred to as “this 

guidebook”), has been produced by the National Institute for Environmental Studies, as part of 

outsourced contracts with the Ministry of the Environment, Japan in FY 2016 and 2017. 

The Paris Agreement, which entered into force in 2016, is the world’s first framework to deal 

with climate change through both “mitigation” measures to reduce greenhouse gas (GHG) 

emissions and “adaptation” to the impacts of climate change. The Paris Agreement defines a 

mechanism of “global stocktake” that all nations set the GHG reduction targets, report each 

progress, and assess the collective progress towards achieving the goals every five years after 2020. 

There are several ways to compile a national GHG emission inventory (hereinafter referred to 

as “inventory”). The Paris Agreement requires each country to report its inventory under a highly 

transparent framework. To secure the transparency of the inventory, a system is necessary to 

compare and evaluate the inventories by some independent ways. One of the ways is a GHG 

observation method using satellite remote sensing techniques that Japan and other countries are 

working on. Especially in the field of satellite remote sensing of GHGs, research and development 

has been actively promoted. Several satellites to monitor GHGs have been in operation. The 

examples of such satellites include the Greenhouse gases Observing SATellite (GOSAT) launched 

by Japan in 2009, the Orbiting Carbon Observatory 2 (OCO-2) by the US in 2014, and Sentinel-5p 

by the European Space Agency in 2016. In addition, future plans for satellites are currently underway. 

This guidebook targets each nation’s inventory compilers and researchers in the related fields. 

The objective of this guidebook is to explain methodology to compare and evaluate inventories, 

which all nations report under the Paris Agreement, by using satellite remote sensing techniques 

(Chapter 2 and 3), and to introduce their practical case studies (Chapter 4). The case studies include 

the latest research at various spatial scales from global and sub-continental level to individual 

large-sized coal power plants. 

All satellite GHG data introduced in this guidebook can be downloaded for free from each 

satellite website. 

Furthermore, capacity building activities for the inventory compilers are being considered. We 

have been examining the feasibility of the activities such as conducting lectures and training 

courses using this guidebook as one learning tool, and providing various data, software, and work 

environment. 

We hope that this guidebook and the future capacity building activities will help the inventory 

compilers to widely use the methodology to compare and evaluate the inventories using satellite 

remote sensing techniques towards the first global stocktake. 
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1. OVERVIEW  
  

1.1 Background  
The Earth's environment is changing rapidly and these changes are affecting natural terrestrial 

and marine ecosystems, agriculture, human health, economic activity, and even national security. 

Recognizing the impact of these changes, the Sustainable Development Goals (SDGs) defined by 

the United Nations (UN) in 2015 include "Goal 13: Take urgent action to combat climate change 

and its impacts". The rising concentrations of atmospheric greenhouse gases (GHGs) such as 

carbon dioxide (CO2) and methane (CH4) are key drivers of climate change (IPCC, 2013). Since the 

dawn of the industrial age, fossil fuel combustion and other human activities have increased the 

atmospheric CO2 concentration by more than 40%, from less than 280 parts per million (ppm) in 

1750 to more than 400 ppm today. Over that period, a diverse range of human activities increased 

the atmospheric CH4 concentrations by more than 2.5 times, from 750 parts per billion (ppb) to 

more than 1.85 ppm.  These rapid increases are raising concerns because CO2 and CH4 are efficient 

atmospheric GHGs and the primary drivers of climate change.  Social, national, and international 

cooperation and collaboration are needed to reduce CO2 and CH4 emissions to acceptable levels.  

The United Nations Framework Convention on Climate Change (UNFCCC) was established in 

1994 to stabilize “greenhouse gas concentrations in the atmosphere at a level that would prevent 

dangerous anthropogenic interference in the climate system.” The Paris Agreement from the 21st 

session of the Conference of the Parties (COP21) of the UNFCCC, which entered into force in 2016, 

reinforced the urgent need for dramatic reductions in GHG emissions to keep the global 

temperature rise this century well below 2 degrees Celsius above pre-industrial levels. Parties to the 

Agreement defined “nationally determined contributions” (NDCs) to a global GHG reduction effort. 

These NDCs are expected to evolve in time, based a Global Stocktake conducted at 5 year intervals.  

To track their progress toward their NDCs and the global GHG emission reduction targets, 

each Party agreed to provide “A national inventory report of anthropogenic emissions by sources 

and removals by sinks of greenhouse gases, prepared using good practice methodologies accepted 

by the Intergovernmental Panel on Climate Change and agreed upon by the Conference of the 

Parties serving as the meeting of the Parties to this Agreement.” To promote transparency, accuracy, 

completeness, consistency, comparability, and environmental integrity of the Stocktake, the 

Agreement defines an enhanced “Transparency Framework”.  

Direct atmospheric measurements of CO2 and CH4 are highly complementary to conventional 

GHG inventories and could provide an independent Measurement, Reporting and Verification 

(MRV) approach for NDCs in addition to providing useful information for improving inventories. 

The “2006 IPCC Guidelines for National Greenhouse Gas Inventories” (IPCC 2006 Guidelines) 
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mandates reports on GHG emissions and removals at national scales using a bottom-up approach 

that includes specific gases (CO2, CH4, N2O, and others), and Sectors (Energy, Industrial Processes, 

and Products, Agriculture, Forestry, Land Use, Waste, and Other), each of which is divided into 

Categories (e.g. transport) which are subdivided into sub-categories (e.g., cars).  When 

implemented fully, the methods specified in these Guidelines can accurately identify and 

characterize emissions sources and natural sinks at national scales. However, many developing 

nations do not have the resources needed to compile comprehensive bottoms-up inventories in the 

presence of rapid economic, social, or environmental change.  Other natural and anthropogenic 

emission sources or natural sinks of GHGs are poorly constrained due to uncertainties in the 

“activity data” or “emission factors” used in their derivation.  

In contrast, direct atmospheric measurements of CO2, CH4, and other GHGs can provide an 

integrated constraint on their atmospheric concentrations and its trends over time. The most 

accurate measurements are collected by a network of ~125 surface stations that are coordinated by 

World Meteorological Organization Global Atmospheric Watch (WMO GAW) program.  In situ 

measurements from surface flasks, towers, and aircraft in this network provide the best available 

constraints on the atmospheric concentrations of CO2, CH4 and other GHGs and their trends at 

continental to global scales. While this network has grown steadily since 1958, and now spans the 

globe, it is still too sparse to provide insight into national scale source and sinks.  Space based 

remote sensing measurements of these gases provide much greater spatial resolution and coverage, 

but have lower precision and accuracy.  As these space based measurement capabilities improve 

and the space based GHG measurements are validated against the more accurate ground-based in 

situ standards by well-documented, scientifically sound methodologies, they could play a much 

larger role in the evaluation and improvement of national inventories. 

The Intergovernmental Panel on Climate Change (IPCC), through its Task Force on National 

Greenhouse Gas Inventories (TFI), has published a series of documents starting from "2006 IPCC 

Guidelines for National Greenhouse Gas Inventories" together with their supplemental documents 

such as "2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: 

Wetlands" and "2013 Revised Supplementary Methods and Good Practice Guidance Arising from 

the Kyoto Protocol". As part of the ongoing "2019 Refinement to the 2006 IPCC Guidelines for 

National Greenhouse Gas Inventories", a request for “updating verification guidance …, especially 

guidance on comparisons with atmospheric measurements …” was approved by IPCC and included 

in the “2019 Refinement” plan. To implement this strategy, here we review recent progress in the 

use of atmospheric GHG observations for emission estimates suitable for comparison to the 

national GHG emission inventories. The Refinement will be authorized at IPCC General Assembly 

to be held in May 2019.  
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1.2  Objective of This Guidebook  
The objective of this guidebook is to provide a general and up-to-date overview on satellite 

remote sensing of GHGs and their applications to GHG emission inventories to inventory compilers 

and researchers who are interested in using satellite GHG data to evaluate and improve national 

greenhouse gas emission inventories.  

The aim of the draft edition of this guidebook is to foster discussions on the use of satellite 

greenhouse gas data between remote sensing scientists and inventory compilers, and to obtain 

valuable comments towards the first edition. The first edition of this guidebook will be used as one 

of reference books used in future capacity building activities for inventory compilers and users.   

  

1.3  Structure of This Guidebook  

The structure of this guidebook is as follows:  

• Chapters 2 and 3 provide an overview satellite remote sensing of greenhouse gases and how 

to retrieve fluxes from these measurements that can be compared GHG inventories.  

• Chapter 4 provides the latest case studies regarding satellite remote sensing of GHGs and 

emission inventories. Note that the essential parts of these case studies have been published 

in peer-reviewed journals.  

• List of references, acronyms, abbreviations, and greenhouse gas-observing satellites are 
provided in Appendices.  
 

 Box 1 in the next page provides a brief overview of the process to estimate surface fluxes of 

carbon dioxide and methane from satellite remote sensing data. Box 2 provides explanations of 

"verification" in IPCC and UNFCCC documents. 
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Box 1. A 6-step process to estimate surface fluxes of carbon dioxide and 
methane from space-based remote sensing measurements collected by 

satellites. 
 

1 Acquire precise, high resolution spectra within CO2 and CH4 absorption bands 
at infrared wavelengths at high spatial resolution over the globe.  Co-bore-
sighted spectra of the molecular oxygen (O2) A-band are also useful for 
estimating the total dry air column abundance, the surface pressure, and the 
presence, distribution, and total optical depths of clouds and aerosols. 

2 Calibrate these space based spectroscopic measurements to convert them 
from instrument units (i.e. time tagged data numbers) to geophysical units (i.e. 
photons/second/steradian/micron) and to relate them to internationally-
recognized radiometric, spectroscopic, and geometric standards, so that they 
can be cross-validated and combined with other types of measurements and 
model results. 

3 Use a remote sensing retrieval algorithm to estimate the column-averaged dry 
air mole fractions of CO2 and CH4,  (XCO2, XCH4) and other relevant 
atmospheric and surface state properties (i.e. surface pressure and 
reflectance, profiles of atmospheric temperature, water vapor, clouds and 
aerosols) from each sounding. 

4 Validate the XCO2 and XCH4 measurements against available standards, 
including ground-based up-looking remote sensing observations and vertical 
profiles of CO2 and CH4 obtained by aircraft. 

5 Perform a flux inversion experiment to estimate the surface GHG fluxes 
needed to maintain the observed XCO2 and XCH4 distribution in the presences 
of the prevailing winds. 

6 Validate the retrieved flux distribution against available standards, including 
direct GHG flux measurement from networks of flux towers, and/or 
comparisons of the CO2 and CH4 profiles returned by the flux inversion models 
against available vertical profiles of these gases measured from aircraft. 

 
Note: Experience from the first generation of space-based GHG satellites confirms that 
this application requires space-based sensors with an unprecedented combination of 
precision, accuracy, spectral and spatial resolution, and coverage. These factors also 
impose stringent requirements on calibration and calibration stability and the validation 
of the XCO2 and XCH4 products retrieved from their measurements. Chapter 2 
summarizes the progress to date and near term plans for instrument development, 
calibration, validation, and the methods needed to retrieve estimates of XCO2 and 
XCH4 from space based observations. Approaches for performing flux inversion are 
described in Chapter 3. 
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Box 2. About  "Verification" 

 
   In the title of the draft edition of this guidebook, a technical term, "verification", was 
used. As we received several suggestions to use words other than "verification", we 
changed the title of the 1st edition from the draft edition. 
   Here, the explanations of "verification" in IPCC and UNFCCC documents are 
excerpted to avoid any confusion. 
 
Chapter 6, Volume 1, 2006 IPCC Guidelines for National Greenhouse Gas 
Inventories: 
In Page 6.5: 
"Verification refers to the collection of activities and procedures conducted during the 
planning and development, or after completion of an inventory that can help to 
establish its reliability for the intended applications of the inventory. For the purposes 
of this guidance, verification refers specifically to those methods that are external to 
the inventory and apply independent data, including comparisons with inventory 
estimates made by other bodies or through alternative methods. Verification activities 
may be constituents of both QA and QC, depending on the methods used and the 
stage at which independent information is used." 
 
In Page 6.19: 
"For the purposes of this guidance, verification activities include comparisons with 
emission or removal estimates prepared by other bodies and comparisons with 
estimates derived from fully independent assessments, e.g., atmospheric 
concentration measurements. Verification activities provide information for countries to 
improve their inventories and are part of the overall QA/QC and verification system. 
Correspondence between the national inventory and independent estimates increases 
the confidence and reliability of the inventory estimates by confirming the results. 
Significant differences may indicate weaknesses in either or both of the datasets. 
Without knowing which dataset is better, it may be worthwhile to re-evaluate the 
inventory." 
 
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_6_Ch6_QA_QC.pdf 
 
 
Handbook on Measurement, Reporting, and Verification for Developing Country 
Parties: 
In Page 16: 
"Verification is addressed at the international level through ICA of BURs, which is a 
process to increase the transparency of mitigation actions and their effects, and 
support needed and received.17 National communications are not subject to ICA. At 
the national level, verification is implemented through domestic MRV mechanisms to 
be established by non-Annex I Parties, general guidelines for which were adopted at 
COP 19 in 2013. Provisions for verification at the domestic level that are part of the 
domestic MRV framework are to be reported in the BURs. Special provisions have 
been adopted for verification of REDDplus activities, as discussed in chapter 3.7." 
 
https://unfccc.int/files/national_reports/annex_i_natcom_/application/pdf/non-
annex_i_mrv_handbook.pdf 
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2. SATELLITE OBSERVATIONS AND DATA APPLICATIONS, PART 1: SATELLITE 
OBSERVATIONS, GHG CONCENTRATION RETRIEVALS AND VALIDATION  

This chapter introduces the basics of space-based remote sensing of GHGs, summarizes the 

progress made by past and present GHG missions, and the prospects for future missions. Section 

2.1 describes the background physics and Section 2.2 provides a brief history of this type of remote 

sensing. In Section 2.3, the definitions of satellite data products are summarized. Section 2.4 

describes the methodology to derive greenhouse gas concentrations from satellite observation. The 

validation of derived greenhouse gas concentrations is discussed in Section 2.5. 

 
2.1 INTRODUCTION 

High resolution spectra of sunlight that is reflected or thermal radiation that is emitted by the 

Earth’s surface and atmosphere carry information about the thermal structure and composition of 

the surfaced and atmosphere. Spectra of reflected solar and emitted thermal radiation collected by 

remote sensing instruments on orbiting spacecraft can therefore be analyzed to yield information 

about the surface and atmospheric state. 

Solar radiation reflected by the Earth and its absorption by atmosphere is typically divided into 

ultraviolet (UV, 10-400 nm), visible (VIS, 400-700 nm), near infrared (NIR, 700-1400 nm), and 

short wavelength infrared (SWIR, 1400-3000 nm) wavelengths. Thermal infrared radiation (TIR) 

emitted by the Earth and its atmosphere is typically divided into mid-wavelength infrared (MWIR, 

3-8 µm), long-wavelength infrared (LWIR, 8-15 µm) and far infrared (15-1000 µm). Molecular 

gases such as CO2 and CH4 interact with this solar and thermal radiation by absorbing and emitting 

only specific wavelengths (or colors) of light. These wavelengths are determined by the electronic, 

vibrational and rotational energy transitions of the molecules, which, in turn, are dictated by 

quantum mechanics. These transitions introduce narrow, dark, “absorption lines” or bright 

“emission lines” in spectra recorded by orbiting spacecraft (Fig. 2.1-1).   

The intensity (darkness) of an absorption line produced by a given gas at a specific wavelength 

in a reflected solar spectrum depends the optical cross section of each molecule of that gas at that 

wavelength, the number density of that type of molecule along the atmospheric optical path and the 

length of the optical path that traverses the atmosphere. For a spectrum of thermal radiation, the 

darkness of an absorption line or brightness of the emission line associated with a given molecular 

transition depends on these factors as well as the temperature variations along the optical path.   

Given information about the vertical structure, composition and optical properties of the 

atmosphere and the observing geometry, the spectrum of reflected sunlight or emitted thermal 

radiation can be simulated using an atmospheric radiative transfer model. For these applications, the 

wavelength-, pressure-, and temperature-dependent optical cross sections of CO2, CH4 and other 

atmospheric gases are determined from increasingly accurate measurements performed by 
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laboratory spectroscopists. The distribution of atmospheric pressure, temperature, and the 

concentration of absorbing gases and other properties of the surface and atmosphere that can affect 

the spectrum, such as the absorption and scattering by the surface or by cloud or aerosol particles, 

can be assumed, based on an environmental model, or derived directly from the measurements, 

using a remote sensing retrieval algorithm.   

To retrieve estimates of greenhouse gas concentrations from space based observations, a remote 

sensing retrieval algorithm typically incorporates three components:  

 

- A surface-atmosphere radiative transfer model, like that describe above; 

- An “instrument model” that simulates the spectrally-dependent response of the satellite 

instrument; and  

- An “inverse model” to optimize the atmospheric trace gas abundance and distribution and 

other surface or atmospheric properties to yield a good fit between the simulated and 

observed spectra.  

 

In a typical satellite remote sensing retrieval experiment, an initial surface and atmospheric 

state is assumed, based on prior knowledge. This “state vector” is used along with information 

about the illumination and viewing geometry to generate a spectrally-dependent radiance spectrum 

at the top of the atmosphere. In addition to a high resolution radiance spectrum, the radiative 

transfer model generates “Jacobians,” which specify the rate of change of the radiances at each 

output wavelength with respect to changes in the abundance or optical properties of the absorbing 

gas or other atmospheric properties at any level of the atmosphere.  

Each synthetic spectrum is processed with the instrument model and compared to the spectrum 

observed by the satellite. The spectrally-dependent differences between the observed and synthetic 

spectrum are then used along with the Jacobians in the spectral inverse model to update the trace 

gas concentrations or other aspects of the assumed surface-atmosphere state to improve the fit. This 

update state is then used to re-compute the synthetic spectrum, and the process is repeated until the 

difference between the observed and simulated spectra agree to within a specified tolerance. The 

final surface-atmosphere state, including the updated GHG concentrations is then saved.    

The approach described above can be used to retrieve estimates of CO2 and CH4 from either 

reflected solar radiation or from emitted thermal radiation, but these two types of measurements 

provide different types of information. Thermal infrared spectra can yield information about the 

CO2 and CH4 concentrations at altitudes between 5 and 10 km at all times of day. However these 

measurements have very little sensitivity to GHG gas concentrations near the surface, where most 

sources and sinks are located. They therefore only provide insight into GHG distributions on 

continental to global scales.   
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Measurements of reflected sunlight collected with SWIR CO2 and CH4 bands can be combined 

with O2 observations collected within the O2 A-band to yield estimates of the column-averaged dry 

air mole fractions of CO2 and CH4 called XCO2 and XCH4, which are most sensitive to the 

near-surface concentrations of these gases. This approach has therefore been widely adopted for 

space based GHG flux inversion experiments, and is the primary focus of this guidebook.  

A critical limitation of this approach is that it can only be used during the day. In addition, 

while space based measurements of reflected sunlight can yield very precise measurements, the 

accuracy of the retrieved XCO2 and XCH4 estimates can be compromised by spatially coherent 

biases, that can be misinterpreted as evidence for sources and sinks. These biases originate from a 

variety of sources including instrument calibration errors and optical path length uncertainties 

introduced by optically-thin clouds and aerosols, pointing errors.  

To address these concerns, a comprehensive validation approach has been implemented to 

identify, characterized and mitigate the impact of these biases. Uplooking spectroscopic 

measurements of the gases collected by the Total Carbon Column Observing Network (TCCON, 

Wunch et al., 2011) serve as a transfer standard for validating satellite XCO2 and XCH4  

measurements against the in situ standards maintained by the WMO network. This approach has 

allowed rapid improvements in the products returned by the first generation of space based GHG 

sensors, but additional improvements are needed to provide timely, quantified guidance on progress 

towards emission reduction targets (NDCs) at national scales. These improvements continue to be a 

major focus of the satellite GHG program. 
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Fig. 2.1-1. The spectrum of the sunlight and thermal emission from the Earth  

showing the absorption bands of several gas species.  

http://www.gosat.nies.go.jp/eng/GOSAT_pamphlet_en.pdf 

 

2.2 BRIEF HISTORY OF SATELLITE REMOTE SENSING OF GREENHOUSE  
 GASES 

The first satellite instrument to exploit the SWIR spectral region for observing CO2 and CH4 

was the Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY  

(SCIAMACHY). SCIAMACHY was designed for general atmospheric chemistry observations and 

was the first space based instrument designed to observe the greenhouse gases CO2 and CH2 at near 

infrared wavelengths. This pioneering experiment was a German led national contribution to the 

European Space Agency Envisat mission, which operated from 2002–2012. SCIAMACHY 

observed the solar radiance upwelling at the top of the atmosphere from the UV to SWIR regions in 

nadir and limb viewing geometries. It also made measurements of the extraterrestrial solar 

irradiance. It had 8 moderate resolution spectral channels: 6 measuring contiguously from 0.21 to 

1.75 μm and two additional SWIR channels spanning 1.94-2.04 μm and 2.26-2.38 μm. Its spectral 

bands were chosen to measure column abundances and concentrations of a broad range of key trace 

gases, aerosol and cloud particles in addition to the first space based measurements of the total 

column amounts and their dry column mole fractions of CO2 and CH4.  
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Some specifications of SCIAMACHY related to greenhouse gases observation are summarized 

in Table 2.2-1. SCIAMACHY data are used in the case studies described in Section 4-1, 4-3, and 

4-5. 

 

Figure 2.2-1. ENVISAT (http://earth.esa.int/image/image_gallery?img_id=391530). 

 

Table 2.2-1. Some specifications of SCIAMACHY, GOSAT, and OCO-2. Note that the values 

shown here are not test results nor actual performances of the instruments. 
Mission Target greenhouse 

gases 
Spectral bands* Spectral resolution Nadir footprint 

size 
SCIAMACHY CO2 and CH4 0.60 - 0.81 µm 

0.97 - 1.77 µm 
1.93 - 2.04 nm 
2.26 - 2.39 nm 

0.48 nm 
1.48 nm  
0.22 nm 
0.26 nm 

32 x 60 km2  

GOSAT CO2 and CH4 0.76 - 0.78 µm 
1.56 - 1.72 µm 
1.92 - 2.08 µm 
5.5 - 14.3 µm 

0.2 cm-1 (0.012 nm) 
0.2 cm-1 (0.054 nm) 
0.2 cm-1 (0.080 nm) 
0.2 cm-1 (0.6 - 4 nm) 

10.5 km 

OCO-2 CO2 0.757 - 0.772 µm 
1.59 - 1.63 µm 
2.04 - 2.08 µm 

0.042 nm 
0.082 nm 
0.104 nm 

1.3 x 2.3 km2 

*: Used for greenhouse gases measurements. 
 

The next generation of greenhouse gases remote sensing missions after SCIAMACHY included 

the Japanese Greenhouse Gases Observing SATellite (GOSAT) and US Orbiting Carbon 

Observatory (OCO). GOSAT was successfully launched in 2009 and continues to operate well 

beyond its design lifetime (5 years). The launch of OCO also in 2009 failed due to a malfunction of 

the launch vehicle. The replacement satellite, OCO-2, was successfully launched in 2014 and has 

been operating since then. 

OCO and OCO-2 were specifically designed for the measurement of CO2. GOSAT also 

measures methane (CH4) as well. Their spectrometers observe relatively narrow spectral bands in 

the NIR and SWIR regions with the spectral resolution and the signal to noise ratio high enough to 
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obtain accurate and precise greenhouse gases concentrations. GOSAT also collects measurements of 

temperature and trace gases in the TIR part of the spectrum.   

These two satellites have different strategies to record spectral measurements necessary for 

CO2 and methane. GOSAT uses a Fourier Transform Spectrometer (FTS) to cover a wide spectral 

range from the NIR to TIR regions with a very high spectral resolution. Due to engineering 

constraints, the FTS instantaneous field of view (IFOV) is relatively large (nadir footprint size is 

10.5 km in diameter) and data acquisition intervals are relatively long (4–5 seconds / measurement). 

However, GOSAT has the advantage of a very versatile (agile) pointing system which can rapidly 

change the line of sight of the instrument within ±20° of nadir in the along-track direction and ±35°  

of nadir in the cross-track direction (Kuze et al. (2009)). Note that GOSAT Research Announcement 

Principal Investigators can submit specific observation requests for GOSAT FTS within engineering 

and resource limitations. 

OCO-2 uses an imaging grating spectrometer to measure CO2. OCO-2 observes 8 

parallelogram-shaped footprints across its swath every 0.333 seconds. Each parallelogram is ~2.25 

km in the along-track direction due to the motion of the spacecraft and up to 1.3 km wide in the 

cross track direction, but often much narrower due to the orientation of the OCO-2 entrance slit as it 

rotates 360° every orbit. This small IFOV or nadir footprint size yields more cloud-free data than 

GOSAT. OCO-2 uses satellite attitude changes to aim at specific targets rather than a dedicated 

small pointing system like GOSAT.  

Some key specifications of GOSAT and OCO-2 are also summarized in Table 2.2-1. GOSAT 

data are used in the case studies described in Section 4-3, 4-4, 4-5, 4-6, and 4-8. OCO-2 data are 

used in Section 4-2 and 4-9. 

 

  
Figure 2.2-2. (Left) GOSAT 

(http://jda-strm.tksc.jaxa.jp/archive/photo/P-029-11965/c42b80d2a4d3461d9b2e8275d1136bfa.jpg) 

and (right) OCO-2 (https://www.jpl.nasa.gov/spaceimages/images/mediumsize/PIA18374_ip.jpg). 

 

 The third generation of greenhouse gases remote sensing missions launched quite recently or 

to be launched by the early 2020's includes: 

GHGSat (a Canadian private company): Claire (launched in 2016) - CH4 
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China: TanSat (launched in 2016) - CO2 

EU: TROPOMI (onboard Sentinel-5p launched in 2017) - CH4,  

    Sentinel-4 (to be launched in 2019),  

    Sentinel-5 (to be launched in 2020) 

China: GMI (onboard Gaofen-5 to be launched in 2018) - CO2 and CH4 

Japan: GOSAT-2 (to be launched in FY2018) - CO2 and CH4 

US: OCO-3 (to be deployed on the International Space Station no earlier than 2018) - CO2  

France: MicroCarb (to be launched in 2021) - CO2  

France and Germany: MERLIN (to be launched in 2021) - CH4,  

US: GeoCARB (to be launched in 2022) - CO2 and CH4 

EC/ESA: Copernicus Sentinel 7 - CO2 and CH4 

 

Appendix-3 is a list of satellite missions for greenhouse gases remote sensing and related 

resources. 

  

  
Figure 2.2-3. (Upper left) TanSat 

(http://english.cas.cn/head/201612/W020161222496366546461.jpg), (Upper right) Sentinel-5p 

(http://www.esa.int/var/esa/storage/images/esa_multimedia/images/2017/10/sentinel-5p_hl_pr/1720

3927-2-eng-GB/Sentinel-5P_HL_PR_highlight_std.jpg),  

(Lower left) 

GOSAT-2(http://jda-strm.tksc.jaxa.jp/archive/photo/P100010579/1c1679dfd228732ea7e8f5062ff3b

ce7.jpg), and (Lower right) MicroCarb 

(https://microcarb.cnes.fr/sites/default/files/styles/large/public/drupal/201512/image/bpc_microcarb

-satellite.png?itok=39m6wHbr). 
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2.3 PRODUCTS OF SATELLITE REMOTE SENSING OF GREENHOUSE GASES 
Satellite data are generally distributed as "Products" which contain satellite measurements and 

other related data with their prescribed formats. Products are often categorized into several levels. 

Below are general descriptions of each level. Note that detailed definitions of products may differ 

according to missions. 

 

• Level 1 products contain physical parameters directly measured by space-borne instruments such 

as spectral radiances. 

• Level 2 products contain physical parameters retrieved from parameters in Level 1 products such 

as concentrations of greenhouse gases. 

• Level 3 products contain gridded maps at some given spatial and temporal resolution. They are 

primarily based on Level 2 products and may include some gap filling. 

• For GOSAT and OCO-2, Level 4A products are defined as the regional flux estimated based on 

the inversion analysis of observed greenhouse gas concentrations (Level 2 products) with a help 

of atmospheric transport models. 

 
GOSAT standard products from Level 1 to 4 can be freely downloaded from NIES GOSAT 

Data Archive Service (GDAS, https://data2.gosat.nies.go.jp/index_en.html, Figure 2.3-1). OCO-2 

Level 1 and 2 products can be downloaded from NASA Goddard Earth Science Data & Information 

Services Center (GES DISC, https://disc.gsfc.nasa.gov/datasets?page=1&keywords=OCO-2). 

Additionally, GOSAT Level 2 data processed by different retrieval algorithms can be downloaded 

from several sites such as European Space Agency's GHG-CCI 

(http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_DATA.html

) and NASA's CO2 Virtual Science Data Environment (https://co2.jpl.nasa.gov). 
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Figure 2.3-1 The data download page of NIES GOSAT Data Archive Service. 

 
2.4 RETRIEVAL ALGORITHMS TO DERIVE GREENHOUSE GAS  
        CONCENTRATIONS FROM SWIR SPECTRAL DATA 

An overview of the algorithms to derive greenhouse gas concentrations from spectral data in 

the SWIR region is given in this section. These methods, often called the retrieval algorithms, are 

being used in the operational Level 2 product generation for the existing satellites such as GOSAT 

and OCO-2. Thus, explanations in this section are concise enough to understand the characteristics 

and the limitations of these products.  

Spaceborne NIR/SWIR spectrometers observe the sunlight reflected at the Earth's surface 

and/or scattered in the atmosphere. These spectra are calibrated using pre-launch and on-orbit 

measurements of radiometric, spectroscopic, polarimetric, and geometric standards to convert them 

from instrument unit to geo-located spectral radiances (Level 1 data products). High resolution 

spectra of this sunlight contain many narrow dark lines due to the absorption of sunlight by gas 

molecules along the atmospheric optical path. The locations (wavelengths) and the relative 

intensities of the absorption lines is unique to each gas species and the overall intensities of the 

absorptions is determined mostly by the number of gas molecules along the atmospheric path as the 

sun light travels toward the Earth surface and is then reflected toward the satellite. By analyzing the 

intensities of these absorption lines, the column-averaged dry-air mole fractions (hereafter, column 

concentrations) of greenhouse gases such as carbon dioxide (XCO2) and methane (XCH4) can be 
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derived. In case of GOSAT and OCO-2, absorption lines around 1.6 µm and 2.0 µm are used for 

CO2 and CH4 measurements. Molecular oxygen (O2) absorption lines around 0.76 µm are also used 

to estimate the surface air pressure and the column concentration of dry air along the same optical 

path used to observe CO2 and CH4. 

The observed NIR/SWIR spectra, however, are affected by not only the column concentrations 

of greenhouse gases, but also other atmospheric constituents, land / ocean surface reflectance, and 

instrumental parameters. Some of these properties are stable, but some are spatially and temporally 

variable. To derive XCO2 and XCH4 from satellite data with the accuracy of about 0.25%, it is 

necessary to estimate the environmental parameters simultaneously with XCO2 and XCH4. The 

impact of the instrumental parameters is established through the calibration process. 

To retrieve XCO2 or XCH4 from GOSAT and OCO-2 spectra, the observed spectrum is 

simulated with a surface/atmospheric radiative transfer model using an assumed (a priori) 

atmospheric and surface state. An inverse model based on optimal estimation (Rodgers, 2000) is 

then used to update gas concentrations and other properties of the surface and atmospheric state to 

minimize the difference between the observed and simulated spectra, and this process is repeated 

until a good fit is achieved. Mathematical details of these algorithm can be found in O'Dell et al. 

(2012), Yoshida et al. (2013), and the literature cited therein.  

Scattering by clouds and aerosols (dust, haze, smog) can introduce uncertainties in the 

atmospheric path length that can introduce errors in the XCO2 and XCH4 retrievals. To minimize 

these errors, the optical properties and vertical distribution of atmospheric aerosols and clouds must 

be retrieved simultaneously with the gas concentrations. Measurements acquired in the O2 A-band 

at 0.76 µm provide insight into the cloud and aerosol scattering at that wavelength. However, an 

accurate description of the wavelength dependent optical properties of clouds and aerosols is 

needed to estimate their impact on the CO2 and CH4 bands at wavelengths near 1.61, 1.67, and 2.06 

µm in the SWIR. Estimating these properties has been a major focus of the current researches, and 

some users have adopted a "Proxy Method" that assumes that the scattering is the same in the 

nearby CO2 and CH4 bands, so that if the concentration of one of these two gases is assumed to be 

known, the other can be retrieved. For methane, see Schepers et al. (2012), Parker et al. (2015), and 

the literature cited therein. 

As most retrieval algorithms can successfully process only soundings with little or no cloud 

contaminations within IFOV of their spectrometers, it is important to implement reliable cloud 

detection and screening algorithms in the operational data processing system. Cloud information 

can be derived from the SWIR reflectance spectra themselves. In the case of GOSAT, cloud maps 

derived from a multispectral imager (Cloud and Aerosol Imager, CAI) are also used to detect cloud 

fragments in the FTS IFOV. For OCO-2, clouds are screened using spectroscopic observations in 

the O2 A-band and CO2 bands at 1.61 and 2.06 µm (see Taylor et al. 2011; 2016) or inferred from 
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co-located images. 

Figure 2.4-1 shows the processing flow for GOSAT FTS SWIR Level 2 CO2 and CH4 data 

products at NIES. GOSAT CAI Level 1B and Level 2 cloud flag processing is incorporated in this 

figure as they provide cloud maps used in FTS Level 2 processing. 

 

 
 

Figure 2.4-1 Processing Flow for FTS SWIR Level 2 CO2 and CH4 data products (Ver.02.2*)  
https://data2.gosat.nies.go.jp/doc/documents/DataProcessingFlow_FTSSWIRL2_V02.2x_en.pdf 

 
2.5 VALIDATION OF COLUMN CONCENTRATIONS DERIVED FROM  
 SATELLITE SWIR DATA 

To ensure the accuracy of the XCO2 and XCH4 products derived from satellite data, the satellite 

measurements must be accurately calibrated and the retrieved XCO2 and XCH4 estimates must be 

validated against internationally-recognized standards. The instruments are calibrated both prior to 

launch and then while in orbit to quantify the spectral, radiometric, and geometric performance. 

Calibration is instrument specific and is not discussed further in this guidebook. To validate XCO2 

and XCH4 estimates retrieved from satellite data (Level 2 or higher level products), these products 

are quantitatively evaluated using the data with higher quality and independently measured by other 

instruments. Here, the satellite data are often validated with ground-based and airborne in situ and 

remote sensing measurements of these gases. 
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The validation approach for column concentrations derived from satellite SWIR spectral data 

adopted by SCIAMACHY, GOSAT, and OCO-2 is to compare the XCO2 and XCH4 estimates 

retrieved from the satellite data with the column concentrations derived from ground-based SWIR 

spectral data collected by Total Carbon Column Observing Network (TCCON; Wunch et al. (2011)). 

TCCON is a network of ground-based high resolution solar-viewing Fourier transform 

spectrometers (FTS) deployed over a range of latitudes and longitudes (Figure 2.5-1).  

  

 

Figure 2.5-1. Locations of TCCON sites. 

(http://tccondata.org/img/tccon_map.jpg) 
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Figure 2.5-2. GOSAT FTS Level 2 products (Version 2) validation results with TCCON data: 

 (left) XCO2 and (right) XCH4 

(http://www.gosat.nies.go.jp/eng/gosat_leaflet_en.pdf) 

 

For detailed results of GOSAT and OCO-2 validation activities, see Morino et al. (2011) and 

Yoshida et al. (2013) for GOSAT and Wunch et al. (2017) for OCO-2. According to Yoshida et al. 

(2013), the biases and the standard deviations of the GOSAT Level 2 products V02.00 are -1.48 and 

2.09 ppm for XCO2 and -5.9 and 12.6 ppb for XCH4, respectively (Figure 2.5-2). According to 

Wunch et al. (2017), the absolute median differences and the RMS differences of OCO-2 XCO2 are 

less than 0.4 ppm and less than 1.5 ppm, respectively. These values are interpreted as the accuracy 

and precision of the XCO2 and XCH4 satellite data. Biases in the retrieved concentration data can be 

reduced by empirical methods (e. g. Inoue et al., 2016) or through comparisons with outputs from 

atmospheric transfer models which calculate global gas concentration distribution. 
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3. SATELLITE OBSERVATIONS AND DATA APPLICATIONS, PART 2: USING 
SATELLITE OBSERVATIONS FOR EMISSION ESTIMATES AND COMPARISON TO 
EMISSION INVENTORIES 
 
Introduction 

Atmospheric measurements of GHGs can provide a useful additional constraint on emissions 

where bottom-up inventories are incomplete or inaccurate (Henne et al., 2016; Saunois et al., 2016). 

A number of techniques are employed for estimating fluxes from GHG concentration measurements. 

On the smallest scales, a mass balance approach can be used to estimate fluxes from concentration 

measurements collected upwind and downwind of a known emission source, with surface and 

airborne measurement campaigns (Karion et al., 2011; McKain et al., 2015; Zavala-Araiza at al., 

2015). On larger scales, ranging from city to national and continental scale, inverse models of 

atmospheric transport and other methods, including inter-tracer correlation, are used to estimate the 

surface fluxes. Inverse models use an atmospheric tracer transport model to simulate GHG 

concentration at observation locations given some assumed surface fluxes. Surface flux 

optimization techniques are applied to provide the best fit between observed concentrations and 

simulations with an atmospheric transport model (Enting, 2002).   

Similarly to ground based measurements, use of the satellite observations for anthropogenic 

GHG emission estimates can be divided into two approaches. Mass balance approaches are 

described in section 3.1, and inverse models are described in section 3.2. 

 

3.1 Emission estimates based on analysis of concentration anomalies around 
emission sources 

While ground-based in situ measurements can provide estimates of GHG concentrations at the 

surface that are both precise and accurate, these measurements are spatially sparse and often 

provide no information about atmospheric profile of these gases. In contrast, space based remote 

sensing observations provide estimates of the column-averaged GHG concentration with much 

greater spatial resolution and coverage, but these estimates are often less precise and accurate as the 

ground-based in situ measurements. 

Accordingly, some emission estimate methods, that can be used successfully with ground based 

observations, are not directly applicable to satellite observations due to lower precision of the 

satellite retrievals and due to observing vertically integrated concentration, which dilutes sensitivity 

to GHG concentrations in the planetary boundary layer. In the cases where the GHG concentration 

gradients are small, the lower precision of the space based measurements can be compensated to 

some extent by accumulating a large number of lower precision measurements. This approach can 

be applied over an extended period of time to recover information about the long-term mean 
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concentration differences between clean regional background and observations made directly over 

the emission point and its plume (Schneising et al., 2008, 2011; Kort et al., 2012; Janardanan et al., 

2016, 2017; Hakkarainen et al., 2016; Turner et al., 2016; Buchwitz et al., 2017 and others). 

Notably, some OCO-2 observations of power plant plumes (Nassar et al., 2017) can be analyzed to 

yield flux estimates without long-term averaging on an event basis, due to lower single sounding 

random errors and its smaller surface footprint allowing observations of narrow plumes of high CO2 

concentration. 

A number of emission estimation methods relying on observations of the concentration 

enhancements around emission sources and their temporal trends have been developed over the past 

decade. Anthropogenic emissions of CO2, CH4, as well as NOx, CO and other pollutants lead to 

buildup of the emitted tracers above the emission area and the transport of a high concentration 

plume downstream of the emission source (city, powerplant, etc.) by wind. Satellites observe 

increased column GHG concentration when the plume is in their observation footprint. The 

emission plumes or enhancements can be identified either by: 

(1) long term averaging of the observed concentration (Schneising et al., 2008, 2011, 2014a; 

Buchwitz, et al., 2017),  

(2) comparing with model simulations (Janardanan et al., 2016, 2017; Nassar et al., 2017), or 

(3) by collocated observation of another pollution tracer such as NO2 by OMI (Hakkarainen et 

al., 2016) and NH3 by GOSAT TIR (Ross et al., 2013), or transport model simulation of pollution 

tracer CO (Parker et al., 2016).  

Fig. 3.1-1 illustrates the three approaches for estimating enhancements listed above. Estimated 

concentration enhancements are related to emissions using either a simple wind-speed dependent 

model (Schneising et al., 2014a, Buchwitz, et al., 2017), or plume-resolving high-resolution 

transport model (Kort et al., 2012, Janardanan et al., 2016, 2017, Nassar et al., 2017). The following 

sections discuss details of these three approaches applied to delineating and quantifying GHG 

concentration enhancements and their relation to emissions. 
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Fig. 3.1-1 Diagram showing three approaches to extracting XCO2 anomalies from multiyear 

time series of satellite observations: (a) long term averaging of SCIAMACHY data over Western 

Europe, from (Scheising et al., 2008); (b) GOSAT observation locations (in red) used to simulate 

XCO2 using high resolution transport model and CO2 emissions (in grey), as in Janardanan et al., 

(2016); (c) OMI observations of NO2, that provide information on “polluted” vs “clean” air for 

filtering OCO-2 observations (Hakkarainen et al., 2016). 

 

3.1.1 Long-term averaging 
As found by Schneising et al., (2008) when analyzing SCIAMACHY XCO2 retrievals for a 

period of 3 years (2003-2005), both the measurement noise and the noise introduced as the CO2 

from other sources is transported over the source of interest by the winds is suppressed by 

averaging, and local concentration anomalies become visible, coinciding geographically with areas 

of strong surface emissions. Long term averages of SCIAMACHY measurements of methane were 

even able to detect trends in local concentration anomalies over emitting areas (Schneising et al., 

2014a).  

Applying long-term averaging is a convenient way to extract emission-related concentration 

anomalies, as it doesn’t require transport modeling or a proxy tracer observation. However, the 

quantitative value of the derived anomalies for the emission estimates is limited, as averaging sums 

up the enhancements due to emission contributions from different wind directions and at different 

wind speeds. Long-term averaging was shown to work for sensors like SCIAMACHY or OMI, 

which provide coarse wide swath observations, resulting in almost continuous observation coverage. 

In the case of narrow swath instruments, like OCO-2, or coarse footprint sampling observations, as 

in the case of GOSAT, a modified approach to long-term averaging will be needed. 

 
3.1.2 High resolution transport modeling 

Janardanan et al., (2016, 2017), and Heymann et al., (2017) used high resolution transport 

models to simulate each GHG plume transported by wind from strong emission sources, while 

Nassar et al., (2017) used simple Gaussian plume model for this purpose. In addition to filtering the 

observations by threshold value of simulated enhancements, Janardanan et al. (2016, 2017) applied 

binned averaging of the observed enhancements that resulted in a large reduction in observation 
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noise, making the relationship between modeled and observed enhancements visibly close to linear. 

In this approach, a simple ratio of the mean observed to simulated enhancements or a regression 

slope value is used as a correction factor for adjusting the emission intensities provided by an 

emission inventory to match the observed concentrations. 

Using transport modeling has the merit of allowing both extraction of the concentration 

anomalies and taking wind speed into account when relating the concentration anomalies to surface 

emissions. However, there are also multiple difficulties of applying the local scale transport 

modeling, including:  

(1)  uncertainties related to defining a clean background;  

(2)  a need for accurate high resolution wind data, resolving coastal air circulations and 

topographic effects;  

(3)  correlated errors due to aerosol loading leading to retrieval biases. 

 

3.1.3 Use of the collocated observations of another tracer of atmospheric pollution 
Use of high resolution transport modeling in backward transport mode (Janardanan et al., 2016, 

2017) requires a large volume of computations in cases of satellite instruments that produce a large 

amount of data (like OCO-2). In that case, collocated observations of another tracer can be applied 

to detect the observations influenced by GHG emissions and separate them from observations made 

in the clean air.  

In Nassar et al. (2017), OCO-2 observations from direct overpasses or close flybys of 

individual coal-burning power plants were fit to simulations using a vertically-integrated Gaussian 

plume model. This required conversion of the OCO-2 observations to XCO2 enhancements relative 

to the background and converting plume model enhancements from gC/m2 to ppm. Although the 

approach avoids simple averaging of the data so that it can utilize gradients within the emission 

plume, each emission estimate was based on from 17 to 167 (mean of 66) OCO-2 footprints from 

the plume and larger numbers for the background (126-489, mean of 310). An associated method 

for quantifying emission estimate uncertainties accounts for the impact of wind speed uncertainty, 

background uncertainties, observation enhancement uncertainties and potential interfering emission 

sources. More details on this study are given in the case study section of the Guidebook. 

Hakkarainen et al. (2016) constructed CO2 anomaly maps from OCO-2 data, and then used 

NO2 observations from OMI to determine whether these anomalies were correlated with fossil fuel 

or biomass burning sources. Ross et al. (2013) used GOSAT TIR NH3 observations to identify 

surface GOSAT footprints influenced by biomass burning, and proceeded with using the data for 

deriving the ratio of CH4 to CO2 emissions by biomass burning. Parker et al. (2016) used 

simulations of CO transport driven by biomass burning emissions to detect influences of biomass 

burning in GOSAT footprints, also for deriving ratio of CH4 to CO2 emissions. 
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Using a reference tracer of atmospheric pollution was shown to be sometimes more accurate 

than high resolution transport modeling for discriminating between polluted versus clean 

background air (Oney et al., 2017). Limitations are also present: (1) although the method is good for 

extracting anomalies related to combustion, other processes (fugitive emissions of methane) 

correlate to combustion intensity (NO2, CO) only at much larger scales; (2) the emission estimates 

depend on uncertainty of the reference tracer emissions, and accounting for chemical transformation 

of the reference tracer. 

 

3.2 Anthropogenic GHG emission estimates based on inverse modeling 
Inverse models combine information about the atmospheric transport with observations of 

GHG concentrations, and adjust the surface fluxes to produce a good fit of the transport model 

simulation to the observations. Inverse models have been used along with ground based GHG 

observations to regional and national scale anthropogenic non-CO2 GHG emission estimates (Stohl 

et al., 2009; Manning et al., 2011; Miller et al., 2013; Henne et al., 2016 and others) and city-scale 

CO2 emissions (Brioude et al., 2013; Breon et al., 2015; Lauvaux, et al., 2016). In flux inversion 

experiments that use sparse, but accurate surface GHG measurements, the number of observations 

is critical as the strength of the observational constraint for estimated fluxes is proportional to the 

number of available observations and inversely proportional to the uncertainty of a single 

observation (Enting, 2002). Thus, as pointed out by Rayner and O’Brien, (2001), satellite 

observations available in large volume over regions underrepresented by the surface network are 

useful for surface flux estimates, even when taken with a precision lower than that of the ground 

based observations. Inverse modeling techniques that were developed for estimating surface fluxes 

with ground-based observations (Rayner et al., 1999; Rodenbeck et al., 2003) are being applied to 

satellite observations as well (Meirink et al., 2008; Maksyutov et al., 2013; Houweling et al., 2015; 

Turner et al., 2015 and others). There are also several reviews of methods which have been tested 

and applied to use of the GHG concentration observations for emission estimates at local and 

regional scale (Jacob et al., 2016, Streets et al., 2013). 

An inverse model relies on an atmospheric transport model to simulate the concentrations of 

emitted tracers at the observation locations with emission intensity fields, and tries to find a surface 

emission field that provides a best match between simulated and observed data. Due to the limited 

spatial and temporal resolution of the winds and other limitations of the atmospheric transport 

models, the mismatch between observed and optimized data can be larger than the GHG 

measurement errors.  

A brief outline of the inverse modeling approach as mathematical formulation of the flux 

optimization problem is given in Section 4.6.2 of this Guidebook, while more detailed description 

that can be found in (Enting, 2002) and other introductory texts on inverse modeling. 
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Depending on observation data available for constraining the target flux category, the 

uncertainties of the inverse model estimates can be larger than those of inventory, as it is often the 

case for anthropogenic CO2 emissions, thus application of the inverse modeling is only justified 

when the uncertainty of the inventory is larger or comparable to the uncertainty of the inverse 

model estimates. The uncertainties of anthropogenic emission inventories vary widely depending on 

target tracer, region, country and source category. There are also difficulties in estimating the 

uncertainty of the bottom-up inventory. One example of significant discrepancies between emission 

inventories and inverse model estimates is related to recent US emissions in the oil and gas category 

(Miller and Michalak, 2017). The main difficulty leading to uncertainty of the emission inventory 

for some species is large variability of the emission factors. As Beusse et al., (2014) mentioned, the 

uncertainty of methane emissions factors for US gas pipelines estimated by US Environment 

Protection Agency (EPA) study was 65%. For CO2, the uncertainty of anthropogenic annual CO2 

emission inventories is rather low at the country scale in most cases (Rypdal et al., 2005), however, 

it can still be high for emerging economies which now represent some of the highest emitting 

nations and a larger share of global CO2 emissions. Furthermore, CO2 emission uncertainties are 

larger for smaller space and time scales, which makes top-down estimates less relevant for national 

reporting, but more relevant for the implementation of NDCs and for countries to understand the 

effectiveness of their efforts to achieve their NDCs and track their own progress. 

 

3.2.1 Application of the inverse model emission estimates for comparison with national 

inventories 
Use of satellite observations in inversion is in the experimental stage, due to multiple technical 

challenges of producing the high-quality concentration retrievals from the satellite-observed spectra. 

However, there are several promising results. A number of methane inverse modeling studies were 

conducted using (mostly) GOSAT and SCIAMACHY satellite data (Fraser et al., 2013; Alexe et al., 

2015; Pandey et al., 2017; Turner et al., 2015; Cressot et al., 2014) and several of those have been 

intercompared in a Global Carbon Project CH4 (GCP-CH4) study by Saunois et al., (2016). A 

valuable outcome of the comparisons performed by Saunois et al., (2016), Bruhwiler et al., (2017) 

and Cressot et al. (2014) is that they have shown a general consistency between ground-based data 

inversions and satellite-based data inversions in terms of the estimated emissions for important 

emission regions such as East Asia and North America. The GCP-CH4 study results for 2012 show 

that the spread (standard deviation) of anthropogenic methane emissions estimates between 

different inverse models for large regions (temperate North America, boreal North America, Europe, 

Central Asia and Japan, China, Russia) is between 11 to 25 % of the multi-model average for each 

region, and GOSAT-based estimates are within the range of the estimates. Accordingly, the inverse 

model estimates based on space-based observations can be considered as an additional source of 
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data for national inventory comparisons alongside with estimates based on surface observation data.  

It should be noted that inverse models have biases dependent on design of the transport model, 

and the emission estimates are sensitive to underlying transport model biases. The differences are 

apparent when estimates for the same region and time period are compared (Houweling et al., 2015; 

Saunois et al., 2016). On the other hand, the differences become smaller when interannual flux 

variability and temporal trends are concerned, as shown recently by analysing the trends in methane 

emission estimates by several inverse models included in the GCP-CH4 study for North America 

(Bruhwiler et al., 2017). Patra et al., (2016) and Saeki and Patra, (2017) applied inverse modeling of 

CH4 and CO2 fluxes over East Asia for checking the inventory time series consistency. Patra et al., 

(2016) concluded that the growth rate in East Asian emissions of CH4 was likely to be 

overestimated by bottom-up inventories.  

Publicly available inverse model estimates for CH4 emissions based on satellite and 

ground-based measurements are provided by inverse model products, including the global inversion 

product from the Copernicus Atmospheric Monitoring Service1 (CAMS), (Bergamaschi et al., 2013), 

NASA CMS-flux product for North America, (Turner and Jacob, 2016) and GOSAT Level 4A 

product (CH4) (Saito et al., 2016). Several institutions, such as Laboratoire des Sciences du Climat 

et de l'Environnement (LSCE), Max Planck Institute for Biogeochemistry (MPI BGC), Harvard 

University and others also make their emission estimates at the global scale based on satellite data 

and make their gridded flux data available upon request.  

Although the satellite-based global products are currently provided at coarse resolution (2-3 

degrees), an upgrade to higher resolution is foreseen, based on recently developed regional zoom 

approaches, like those based on the NAME model (Ganesan et al., 2017; Manning et al., 2011), 

CHIMERE (Broquet et al., 2011) or Carbontracker-Lagrange (He et al, 2017).  

To compare national inventory to publicly available inverse modeling products introduced 

above, one should implement following steps: 

1. Check if the inverse modeling product confirms to at least 3 criteria: 

 (1) the product is checked for probable errors and inconsistencies via comparison to other 

inverse modeling estimates (see Saunois et al., 2016, Bruhwiler et al., 2017);  

 (2) observations impose strong enough constraint on estimated fluxes, the inverse model uses 

several observation sites over the country and, possibly, good satellite data coverage, 

sufficient to reduce flux uncertainty by 30-50%; 

 (3) the estimated inverse model flux uncertainty is less than uncertainty of the national 

inventory. 

2. Based on the inverse modelling data available at the time of inventory report preparation, 

select available time periods overlapping between inventory data and inverse model results. 

Download gridded emission data files, file format descriptions and release notes.  
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3. Remapping from gridded data to country boundaries. Calculate area fraction of the national 

land area in each grid cell of the emission data grid (fractional overlap between data grid cell 

boundaries and nation borders). Use area fraction to calculate national total emission for 

each time period (usually available at monthly time step), by summing grid emissions 

multiplied by fraction of national land area. Derive national total for each year by summing 

the monthly total emissions. 

4. Remap emission uncertainty, in the case all the data required for regional emission 

uncertainty estimates is provided together with inverse modelling results. 

5. When the number of available inverse modelling products is greater than one, remap to 

national total for each year for all the available products. It is useful to include in the 

comparison national total estimates with each available inverse modelling product, as in 

(Bergamaschi et al., 2018). 

 

The above step-by-step guidance is illustrated in the following diagram (Fig. 3.2-1) 

 

 
Fig. 3.2-1 Step by step procedure for extracting the national (reginal) total emissions from inverse 

modeling products. 

 
Ready-made estimates for several countries, such as US (conterminous), Russia and China for 

year 2012 are prepared based on Global Carbon Project CH4 inverse model estimates (Saunois et al. 

2016) using a procedure that is described above and are published on the Environmental System 

Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) web site (Global Methane Budget 

2000-2012, 2016). 

Useful examples of comparison between national emissions estimated by inventory and inverse 
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model are given by Bruhwiler et al. (2017) and Turner et al. (2015), both made for USA. Separate 

estimates of the sector-specific anthropogenic (oil and gas, agriculture and waste) and natural 

(wetlands) emissions is still a problem even for recent high resolution regional inverse modeling 

studies (Bergamaschi et al., 2018). Nevertheless, Turner et al. (2015) used GOSAT observations and 

a transport model with high resolution zooming over North America to project likely 

underestimation of the anthropogenic emissions in US methane emission inventory. In their case, 

distinguishing between natural and anthropogenic sources is assisted by geographical separation 

between natural sources (wetlands in the North) and growing oil and gas emissions in the South. 

More details on the study by Turner et al. (2015) are also given in the case study section 4.6 of this 

Guidebook. An estimate of the Indian national total emissions of methane was made by Ganesan et 

al., (2017) using high resolution regional inverse model and combination of the ground based 

observations and GOSAT data. They have concluded that atmospheric observation data support the 

nationally reported emissions in terms of both trend and amount. 

 
1 http://atmosphere.copernicus.eu/documentation-supplementary-products#greengas-fluxes 
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4. CASE STUDIES 
In this chapter, several case studies in which greenhouse gas inventories are compared with the 

estimates from satellite-based or ground-based concentration measurements are described. Target 

gases, gas concentration data sources, and methods in each section are summarized in Table 4.0-1. 

 

Table 4.0-1. Summary of case studies in Chapter 4. 

Section Target gas Gas concentration data source Method 

4-1 CO2 SCIAMACHY Concentration enhancement 

4-2 CO2 OCO-2 Concentration enhancement 

4-3 CO2 and CH4 GOSAT and SCIAMACHY Concentration enhancement 

4-4 CO2 and CH4 GOSAT Concentration enhancement 

4-5 CH4 GOSAT and SCIAMACHY Concentration enhancement 

4-6 CH4 GOSAT Inverse modeling 

4-7 CO2 GLOVALVIEW (flask) Inverse modeling 

4-8 CH4 WDCGG and GOSAT Inverse modeling 

4-9 CO2 OCO-2 Concentration enhancement 
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4.1 Anthropogenic CO2 emission trends from SCIAMACHY/ENVISAT and 
comparison with EDGAR 
M. Buchwitz1, M. Reuter1, O. Schneising-Weigel1, H. Bovensmann1, and J. P. Burrows1 

1) Institute of Environmental Physics (IUP), University of Bremen, Germany 

 
4.1.1 Introduction 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) 

(Burrows et al., 1995; Bovensmann et al., 1999) onboard of the European environmental satellite 

ENVISAT was operational from March 2002 to April 2012. SCIAMACHY was a passive remote 

sensing spectrometer observing backscattered, reflected, transmitted or emitted radiation from the 

atmosphere and Earth's surface, in the wavelength range between 240 and 2380 nm. The spatial 

resolution depends on spectral region but was typically 30 km along track and 60 km across track. 

Global coverage at the equator was achieved after six days (swath width 960 km; nominal 

measurement sequence: 50% nadir (downlooking) and 50% limb (scanning the atmosphere while 

looking to the Earth’s horizon and above)). 

For the retrieval of column-averaged dry-air mole fractions of carbon dioxide (CO2), i.e., XCO2, 

two spectral regions have been used: the 1.6 μm region containing CO2 absorption lines and the 

0.76 μm spectral region covering the oxygen (O2) A-band.  

The retrieved XCO2 (e.g., Buchwitz et al., 2000, 2015, 2016; Schneising et al., 2008, 2011; 

Reuter et al., 2010, 2011; Heymann et al, 2015) has been used to address important scientific issues 

related to the natural sources and sinks of atmospheric CO2 (e.g., Reuter et al., 2014a, 2017; 

Schneising et al., 2014b). 

In the following results from studies related to anthropogenic CO2 emissions, which have been 

published in the peer-reviewed scientific literature (Schneising et al., 2008, 2013; Reuter et al., 

2014b), are summarized.  

 
4.1.2 Data 
4.1.2.1 GHG Concentration Data 

Schneising et al., 2008, analyzed SCIAMACHY year 2003-2005 XCO2 retrievals. For 

validation the XCO2 product of the Total Carbon Column Observing Network (TCCON) (Wunch et 

al., 2011) has been used. Furthermore, they used atmospheric CO2 fields from NOAA’s 

CO2-assimilation system CarbonTracker (Peters et al., 2007). 

Schneising et al., 2013, used SCIAMACHY XCO2 retrievals covering the time period 

2003-2009 and CarbonTracker CO2 fields (Peters et al., 2007). 

Reuter et al., 2014b, used SCIAMACHY XCO2 retrievals from the time period 2003-2011. 
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4.1.2.2 Other Data 

Schneising et al., 2008, used for comparison with the satellite XCO2 retrievals population 

density (CIESIN/CIAT, 2005) and EDGAR anthropogenic CO2 emissions (EDGAR 3.2 Fast Track 

2000 dataset (32FT2000), Olivier et al., 2005). Furthermore, MODIS/Terra aerosol optical depth 

has been used (Level 3 collection 5 product obtained from http://modis-atmos.gsfc.nasa.gov/) and 

subvisual cirrus cloud retrievals from E. Martins, LMD/IPSL, Palaiseau, France. 

Schneising et al., 2013, used for comparison EDGAR anthropogenic CO2 emissions (version 

4.2, Olivier et al., 2012). In addition, an aerosol optical depth data set based on MODIS from the 

European GEMS (Global and regional Earth-system Monitoring using Satellite and in-situ data) 

project has been used (obtained from http://data-portal.ecmwf.int/data/d/gems reanalysis/). 

EDGAR version 4.2 has also been used by Reuter et al., 2014b. In addition, SCIAMACHY 

NO2 vertical column retrievals have been used. 

 
4.1.3 Methods 
4.1.3.1 Outline 

Different methods have been used in each of the three publications. These methods are shortly 

described in the following sub-sections. 

 

4.1.3.2 Methodology used by Schneising et al., 2008 

The main goal of Schneising et al., 2008, was to demonstrate that regionally elevated CO2 over 

major anthropogenic source regions can be detected from space. Focus was on the Rhine-Ruhr area 

in western central Europe but other regions have also been studied, e.g., the US East Coast and the 

region around Tokyo in Japan. To eliminate XCO2 variations not originating from anthropogenic 

CO2 emissions, in particular variations due to uptake and release of CO2 by the terrestrial biosphere, 

and to reduce noise, the satellite XCO2 retrievals have been averaged over all three years 

(2003-2005) using a spatial grid of 0.5ox0.5o. The resulting XCO2 maps have been compared with 

population density and EDGAR anthropogenic CO2 emissions. In order to make sure that the 

observed elevated satellite-derived XCO2 is not significantly affect by aerosols or thin clouds, 

satellite aerosol optical depth and information on subvisual cirrus clouds have been used. In 

addition, also simulated retrievals have been carried out as part of the error analysis. For details 

please see Schneising et al., 2008. 

 

4.1.3.3 Methodology used by Schneising et al, 2013 
The method used by Schneising et al., 2013, is similar as the method used by Schneising et al., 

2008. The main differences are (i) the use of a longer time period, (ii) the aim to obtain information 

on emission trends, and (iii) to achieve a more quantitative comparison with EDGAR anthropogenic 



Chapter 4  Case Studies 

4.1-3 

CO2 emissions assuming that a regional relative CO2 emission enhancement corresponds to the 

same relative regional XCO2 enhancement over the source region of interest. For details please see 

Schneising et al., 2013. 

 

4.1.3.4 Methodology used by Reuter et al, 2014b 
The method of Reuter et al., 2014b, differs significantly from the methods of Schneising et al., 

2008 and 2013. Reuter et al., 2014b, took advantage of the fact that SCIAMACHY provides 

retrievals of NO2 vertical columns in addition to XCO2. They used satellite-derived NO2 as a tracer 

for anthropogenic emissions and calculated regional anomalies ΔXCO2 and ΔNO2 from collocated 

SCIAMACHY XCO2 and NO2 retrievals. They found an approximately linear relationship between 

satellite-derived ΔXCO2 and ΔNO2 and interpreted the slope as a (regionally dependent) conversion 

factor allowing the use of NO2 as a proxy for expected regional XCO2 enhancements from nearby 

anthropogenic emissions (“XCO2
e”). XCO2

e is an estimate of the expectation value of the XCO2 

enhancement resulting from the source (or sources) causing a measured NO2 level. Using this 

method, they obtained emission trends and CO2-to-NOx emission ratios, which were compared with 

EDGAR. A very detailed error analysis is also presented in Reuter et al., 2014b, which had been 

carried out in order to obtain reliable uncertainty estimates. For details please see Reuter et al., 

2014b. 

 

4.1.4 Case Study Results 
In the following three sub-sections the main results from the three case studies are shortly 

presented and summarized. 

 
4.1.4.1 Results obtained by Schneising et al., 2008 

The main goal of the study of Schneising et al., 2008, was to find out if regionally elevated CO2 

over major anthropogenic source regions can be detected from space. Their results can be 

summarized follows: When averaging the SCIAMACHY XCO2 retrievals over the time period 

2003-2005 the resulting map for western central Europe (Fig. 4.1-1) shows elevated CO2 over the 

highly populated region of western central Germany and parts of the Netherlands and Belgium 

(“Rhine-Ruhr area”). They found that the spatial pattern is reasonably well correlated with 

population density and EDGAR anthropogenic CO2 emissions (see Fig. 4.1-2). Note that a perfect 

correlation cannot be expected due to atmospheric transport and sparse sampling of the satellite data. 

On average they found a regional enhancement of 2.7 ppm over this region (XCO2 average in red 

rectangle minus green rectangle in Fig. 4.1-2). The potential contribution to this enhancement from 

regionally elevated aerosols and sparse sampling of the satellite data was conservatively estimated 

to 1-1.5 ppm. They found similar results also for other major anthropogenic source regions such as 
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the US East Coast and the region around Tokyo in Japan. Overall, they concluded that their findings 

indicate that regionally elevated CO2 arising from regional anthropogenic CO2 emissions can 

potentially be detected from space. 
 

 
 

Figure 4.1-1. Elevated CO2 over western central Europe’s major anthropogenic source region, the 

Rhine-Ruhr area, covering parts of Germany, the Netherlands and Belgium. Adapted from 

Schneising et al., 2008 (see Fig. 4.1-2 for their original figure).   

 

4.1.4.2 Results obtained by Schneising et al., 2013 
The main goal of the study of Schneising et al., 2013, was to obtain more quantitative results 

compared to the predecessor study presented in Schneising et al., 2008. A summary of their main 

results is shown in Fig. 4.1-3. By subtracting satellite retrieved XCO2 background values from those 

retrieved over urban areas significant CO2 enhancements for several anthropogenic source regions 

have been found, namely 1.3±0.7 ppm for the Rhine-Ruhr metropolitan region and the Benelux, 

1.1±0.5 ppm for the East Coast of the United States, and 2.4±0.9 ppm for the Yangtze River Delta 

area in China. The order of magnitude of the enhancements is in agreement with what is expected 

for anthropogenic CO2 signals. The larger standard deviation of the retrieved Yangtze River Delta 

enhancement is due to a distinct positive trend of 0.3±0.2 ppm/yr, which is quantitatively consistent 

with anthropogenic emissions from the Emission Database for Global Atmospheric Research 

(EDGAR) in terms of percentage increase per year (see Fig. 4.1-3 bottom right). The obtained 

trends over Central Europe and the US East Coast also agree with EDGAR within the (quite large) 

uncertainty of the satellite-derived trends. 
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Figure 4.1-2. Top: SCIAMACHY XCO2 during 2003-2005 over western Central Europe. Middle: 

Population density. Bottom: EDGAR anthropogenic CO2 emissions. From Schneising et al., 2008 

(their Fig. 17).   

 

4.1.4.3 Results obtained by Reuter et al., 2014b 

Reuter et al., 2014b, analyzed simultaneous and co-located satellite retrievals from 

SCIAMACHY of the column-average dry-air mole fraction of CO2, i.e., XCO2, and NO2 vertical 

columns for the years 2003–2011 to provide top-down estimates of emission trends and CO2 to 

NOx emission ratios. Their analysis (Figs. 4.1-3 and 4.1-4) showed that the CO2-to-NOx emission 

ratio has increased by 4.2+/-1.7%/yr in East Asia. In this region, they found a large positive trend of 
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CO2 emissions (9.8+/-1.7%/yr), which was largely attribute to the growing Chinese economy. This 

trend exceeds the positive trend of NOx emissions (5.8+/-0.9%/yr). Their findings suggest that the 

recently installed and renewed technology in East Asia, such as power plants, transportation, etc., is 

cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative 

emission levels in North America and Europe. The satellite-derived trends over North America and 

Europe were negative and in agreement with EDGAR (Fig. 4.1-4). 

 

 
Figure 4.1-3. Overview of the main results of Schneising et al., 2013. Left: Comparison of 

SCIAMACHY XCO2 during 2003-2009 with EDGAR version 4.2 anthropogenic CO2 emissions 

over the three major source regions western central Europe, US East Coast and China. The 

SCIAMACHY XCO2 maps have been used to compute annual XCO2 enhancements (ΔXCO2) by 

computing source region minus background region differences (see top right). The main result in 

terms of relative (percentage) enhancement trends of the satellite regional enhancement and the 

corresponding EDGAR enhancements are shown in the bottom right yellow rectangle.      
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Figure 4.1-4. Overview of the main results of Reuter et al., 2014b. The maps show SCIAMACHY 

NO2 converted to XCO2 using regionally dependent conversion factors obtained from co-located 

SCIAMACHY XCO2 and NO2 column correlations and a filtering method to select ground pixels 

affected by near-by anthropogenic sources. The histograms show derived emission trends for NOx 

(red) and CO2 (green) over the source regions North America / Europe (left) and East Asia (right). 

Adapted from Reuter et al., 2014b (see Fig. 4.1-5 for the original figure). 

 

 
Figure 4.1-5. Trends of CO2-to-NOx emission ratios (grey), tropospheric NO2 emissions (red), 

XCO2 enhancements (green) and corresponding emission trends from EDGAR (green-white 

striped). From Reuter et al., 2014b (their Fig. 3). For details see Reuter et al., 2014b. 
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4.2 Direct space-based Observations of Anthropogenic CO2 Emission Areas: 
Global XCO2 Anomalies 
Janne Hakkarainen1, Iolanda Ialongo1, and Johanna Tamminen1 

1) Finnish Meteorological Institute, Earth Observation, Helsinki, Finland 

 
4.2.1 Introduction 

Over the past two decades, spaceborne measurements of short-lived air pollutants (such as 

nitrogen dioxide NO2 and sulfur dioxide SO2) have revolutionized the way we monitor atmospheric 

composition, providing more and more accurate information on the pollution levels on the global 

scale. In comparison to these short-lived air pollutants that are detected close to the emission 

sources, the growing trend, strong seasonality, long lifetime, and large atmospheric background, 

significantly complicate the analysis of the anthropogenic CO2 emissions from space. This is why 

most studies employ auxiliary data from models, emission inventories, or other proxies in order to 

identify anthropogenic CO2 emission areas from satellite-based CO2 columns. 

Direct methods, i.e. methods that are based on direct usage of space-based observations and not 

on atmospheric modeling, have proven to have several desirable properties for example in air 

quality applications. For example direct methods can reveal discrepancies between emission 

inventories and identify missing sources, as seen e.g. for NO2 and SO2 [McLinden et al., 2016] and 

for methane [Kort et al., 2014]. Superior spatial detail can also be reached from space-based 

observations, as many inversion methods are based on scaling pre-described a priori fields. A great 

challenge in direct methods, however, is to translate concentration information to emissions. 

This section summarizes a recent study [Hakkarainen et al., 2016] that presents a direct 

observation of anthropogenic CO2 from Orbiting Carbon Observatory-2 (OCO-2). The study 

proposes a novel methodology to detect anthropogenic CO2 emission areas, solely based on 

spaceborne CO2 measurements. The fundamental idea is to average-out the CO2 transport and 

calculate long-term averages of CO2 anomalies. These anomalies are obtained by deseasonalizing 

and detrending the data. The key is to use the observations themselves by removing the regional 

daily median values. For comparison, OMI (Ozone Monitoring Instrument) NO2 tropospheric 

columns are used as an independent tracer of atmospheric pollution and CO2 and NO2 information 

are combined via cluster analysis. The results are also compared with existing anthropogenic CO2 

emission inventories. 

 

4.2.2 Data 
The column-averaged dry air mole fraction of CO2 (XCO2) data from Orbiting Carbon 

Observatory-2 (OCO-2) are used in the analysis. The methodology is also applicable to the 

Greenhouse gases Observing SATellite (GOSAT) data, and this option will be exploited in more 
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detail in future studies. 

 

4.2.2.1 OCO-2 Data 
Recently, measurements of column-averaged dry air mole fraction of CO2 (XCO2) have 

become available from the Orbiting Carbon Observatory-2 (OCO-2) [Crisp et al., 2004]. The 

instrument provides measurements with eight 2.25 km long footprints along a narrow (0.4 to 1.29 

km) swath [Crisp et al., 2008]. The ACOS (Atmospheric CO2 Observations from Space) retrieval 

algorithm is used to derive XCO2 [O'Dell et al., 2012]. The study uses the version 7 reprocessed lite 

files including bias corrected XCO2 data available from September 2014 to April 2016. The data 

have been screened using quality flags set to zero and warning levels smaller than 15. 

 

4.2.2.2 Auxiliary Data 
The NO2 tropospheric column measurements from the Ozone Monitoring Instrument (OMI) are 

used in the analysis [Levelt et al., 2006]. OMI is a Dutch-Finnish instrument operating on board 

NASA's Aura satellite since 2004. OMI measures solar backscattered light in the UV-visible 

spectral region with spatial resolution at nadir of 13 × 24 km2 and almost daily global coverage. 

The XCO2 anomalies are compared to the ODIAC (Open-source Data Inventory for 

Anthropogenic CO2) emission estimates. ODIAC is a global high-resolution emission data set for 

fossil fuel CO2 emissions [Oda and Maksyutov, 2011]. It was originally developed for the GOSAT 

project and is available at http://www.odiac.org/. 

 
4.2.3 Methods 
4.2.3.1 XCO2 Anomalies 

In order to detect the pollution areas, one first subtracts the daily median, calculated from the 

selected study region, from the individual observations. Hence, the XCO2 anomalies are derived as 

XCO2(anomaly) = XCO2(individual) – XCO2(daily median). 

This step simultaneously deseasonalizes and detrends the data. The approach also reduces the effect 

of the changing spatial distribution of the data points and the impact of potential regional-scale 

biases in the OCO-2 data set. Based on the sensitivity analysis, the selection of the background 

region is not significant. The methodology is further illustrated in Figure 4.2-1. 

In the second step, one calculates the mean from all the XCO2 anomalies within a defined grid 

box (e.g., 1 × 1° latitude-longitude) for a selected time period (e.g., one year). 
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Figure 4.2-1. Map of OCO-2 XCO2 observations during 30 August 2015 (left). Pixels are enlarged. 

OCO-2 daily median (red) values (right). Grey points indicate all the valid values observed during 

30 August 2015. XCO2 anomalies are obtained when the daily median is subtracted from these 

values. Figure adapted from [Hakkarainen et al., 2016]. 

 

4.2.3.2 Clustering methods 
In order to combine the information from XCO2 anomalies and NO2 mean fields, and to 

discriminate different emission areas, the clustering methods [e.g., Aggarwal, 2015] are used. In 

particular, the study uses Expectation-Maximization (EM) clustering with mixture of Gaussian 

distributions. The results are also illustrated on maps in order to better understand the correlation 

between XCO2 anomalies and NO2 tropospheric columns. 

 

4.2.4 Case Studies 
4.2.4.1 Global XCO2 Anomalies 

The top row of Figure 4.2-2 displays the mean XCO2 anomalies calculated for three different 

regions. One observes elevated values over the main polluted areas worldwide: eastern USA, 

central Europe, Middle East, China, India, and Japan. As expected from the emission inventories, 

the XCO2 anomalies show the highest values over eastern China. Also, the areas in Africa where 

biomass burning occurs are characterized by elevated anomaly values. 

The findings match the spatial distribution of the mean NO2 tropospheric columns observed by 

OMI (middle row) and the ODIAC anthropogenic CO2 emission inventory map (bottom row). The 

XCO2 anomaly map shows, for example, the steep gradients in India, Japan, and north of Tibetan 

Plateau similar to those observed by OMI and emission inventories. Furthermore, it is possible to 

detect other enhancements over large cities on the U.S. West Coast and in Saudi Arabia. 

As an example, Figure 4.2-3 shows a zoomed XCO2 anomaly map over the Middle East with 

finer gridding (0.5 × 0.5°). In addition to the large polluted area in Iraq and Persian Gulf, several 

cities are detectable from the map, e.g., Cairo, Riyadh, and Tehran. In particular, we note that the 

XCO2 anomaly values observed over Iraq are comparable to those in central Europe, suggesting 
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possible missing emission information in the inventories. 

 
Figure 4.2-2. Mean OCO-2 XCO2 anomalies (top row). Mean tropospheric OMI NO2 columns 

(middle row). ODIAC emission inventory map (bottom row). The spatial resolution is 1 × 1°. 

Figure from [Hakkarainen et al., 2016]. 
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Figure 4.2-3. Mean OCO-2 XCO2 anomalies over Middle East. Orange-yellow color tones highlight 

the most polluted areas. The spatial resolution is 0.5 × 0.5°. Figure from [Hakkarainen et al., 2016]. 

 

4.2.4.2 Cluster Analysis and Validation 
The top row of Figure 4.2-4 shows the direct comparison between the NO2 and XCO2 anomaly 

data. In order to analyze the correlation between the two data sets cluster analysis is employed. In 

bottom row, the results of the cluster analysis are illustrated on a map. This allows the separation of 

different populations in the scatter plot (top row) and to identify their corresponding geographical 

location. As an example, in middle column, central Europe is selected together with Cairo, Istanbul, 

Moscow, and several Middle Eastern cities and oil extraction sites as the high-polluted cluster 

(yellow pixels). The rest of Europe and Middle East is selected as the next cluster (green). Another 

cluster (light blue) includes mainly the area in Africa affected by the emissions from biomass 

burning. Finally, the last cluster (dark blue) identifies the background. 

The middle row of Figure 4.2-4 shows the direct comparison between XCO2 anomalies and 

ODIAC CO2 emissions, grouped according to the same clusters obtained from XCO2 anomalies and 

NO2 observations. The correlation between the mean XCO2 anomalies and the emission inventories 

is further illustrated in Figure 4.2-5. The data are binned according to the emission values every 0.5 

gC/m2/d, after removing the data with low emissions (below 0.5 gC/m2/d). A part of two outliers 

(related to number of data points) corresponding to Beijing and Moscow, one can observe a positive 

correlation between the anthropogenic CO2 emissions and the XCO2 anomalies. 
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Figure 4.2-4. Scatterplot between mean OCO-2 XCO2 anomalies and mean tropospheric OMI NO2 

columns (top row). The points are color-coded based on the results of the cluster analysis. 

Scatterplot between mean OCO-2 XCO2 anomalies and ODIAC emission with same color-coding 

(middle row). Maps of the different clusters (bottom row). Figure from [Hakkarainen et al., 2016]. 
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Figure 4.2-5. Scatterplot between mean OCO-2 XCO2 anomalies and emission estimates for each 

region. The data are binned according to the emission values every 0.5 gC/m2/d. Figure adapted 

from [Hakkarainen et al., 2016]. 

 

4.2.4.3 Future Outlook 
The recent study [Hakkarainen et al., 2016] summarized here showed the first results on global 

XCO2 anomalies using OCO-2 data. The study also combined the CO2 and NO2 information via 

cluster analysis. More work is needed to translate these anomalies into emissions using, e.g., 

statistical model as in many air quality studies. In addition to space-based NO2 observations, more 

information can be obtained, e.g., from CO observations related to biomass burning. One can also 

use the same technique for other satellite instruments and species. As an example, Figure 4.2-6 

shows the preliminary analysis of mean GOSAT XCO2 and XCH4 anomalies from the years 2009–

2014. The long GOSAT data set provides a good opportunity to study trends in XCO2 and XCH4 

anomalies. 
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Figure 4.2-6. Mean GOSAT XCO2 (top row) and XCH4 (bottom row) anomalies for the years 2009–

2014. The spatial resolution is 2 × 2°. 
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4.3 Using space-based observations to study urban CO2 emissions and CH4 
emissions from fossil fuel harvesting  
Eric A. Kort1 

1) University of Michigan, Ann Arbor, Michigan, USA 

 
4.3.1 Introduction 

Since the pre-industrial era human activities have directly resulted in increased carbon dioxide 

(CO2) and methane (CH4) levels in the atmosphere, and this trend continues today. With better 

quantification of emissions of these gases, we can both better understand current and future climate 

trajectories as well as inform mitigation efforts. In some cases, human emissions are spatially 

localized. For CO2, cities present large, concentrated sources, whereas for CH4, regions of 

fossil-fuel harvesting often present intense, localized sources. These intensely emitting regions 

provide an opportunity for space-based observation and attribution that can be more challenging 

when sources are weaker and more distributed. In the following section, we illustrate the capability 

of space-based CO2 and CH4 measurement platforms to directly observe enhancements attributable 

to cities and fossil-fuel production, respectively [Kort et al., 2012; 2014]. These two cases illustrate 

that it is possible to observe and quantify elevated CO2 and CH4 levels from space, and that 

emission trends are also detectable. These cases also highlight challenges in expanding the use of 

these techniques, most notably the limitations of current data coverage from existing space-based 

sensors and the challenge of attributing signals to specific sources/source processes.   

 
4.3.2 Data  

Two different space-based platforms have been used in these case studies.   

4.3.2.1 GOSAT 
For the urban CO2 example we analyzed column averaged dry air mole fraction of CO2 (XCO2) 

derived from measurements made by the Greenhouse gases Observing Satellite (GOSAT) [Morino 

et al., 2011]. GOSAT spectra were fit using the ACOS v2.9 level 2 algorithm [Wunch et al., 2011; 

O’Dell et al., 2012; Crisp et al., 2012]. Measurements for the urban study were collected between 

June 2009 and 2011. GOSAT footprints have approximated 10km diameter, and the urban analysis 

focused on measurements made in and around Los Angeles and Mumbai. 

 

4.3.2.2 SCIAMACHY 
For fossil-fuel harvesting CH4 emissions we analyzed column averaged dry air mole fraction of 

CH4 (XCH4) retrieved from spectra collected by the SCanning Imaging Absorption SpectroMeter 

for Atmospheric CHartographY (SCIAMACHY) instrument from 2003-2009 [Frankenberg et al., 

2011]. The United States was analyzed in detail, and in order to remove topographic effects on the 
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retrieval and to create methane anomaly figures we subtract a topographic dependent value [Kort et 

al., 2014].   

 
4.3.3 Method 
4.3.3.1 Urban CO2 approach 

To isolate CO2 emissions from a concentrated urban source, we leverage GOSAT observations 

made directly over or downwind of the urban region, compared to observations in the vicinity of the 

city but not impacted by urban emissions. This complementary data is necessary to establish an 

enhancement attributable to urban emissions. By subtracting background values from the 

urban-influenced values, an enhancement attributable to emissions from a particular urban area can 

be isolated. One additional benefit of this difference method is the cancellation of bias errors shared 

between these two close observations (for example, a solar zenith angle dependence would be 

eliminated). In Figure 4.3-1, we show GOSAT data selected for Los Angeles [Kort et al., 2012]. In 

this case, the urban observations (“basin”) were systematically elevated compared to the 

background value (“desert”). 

 

Figure 4.3-1. From Kort et al., 2012. a) Nightlights map of LA, with selected GOSAT observations 

within the basin (pink) and in the background desert (red triangles). b) Time-series for basin and 

desert observations averaged in 10-day bins. c) The different between basin and desert, showing an 

average enhancement of 3.2 ppm. 

 

4.3.3.2 Fossil-fuel production region approach 
To investigate methane emissions from the Four Corners region, we combined SCIAMACHY 

observations with an atmospheric transport model to directly link atmospheric concentrations to 

underlying fluxes. We used the Weather Research and Forecasting Chemical transport model 
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(WRF-Chem) [Grell et al., 2005] to represent atmospheric dynamics. By simulating atmospheric 

transport and advecting methane emissions from the EDGAR v4.2 inventory [EDGAR 2011], we 

produce simulated model enhancements that can be compared directly with the satellite 

observations. Figure 4.3-2 illustrates the observations, inventory, and simulation for the Four 

Corners regions [Kort et al., 2014].  

 

 
Figure 4.3-2. From Kort et al., 2014. a) Average SCIAMACHY anomaly from 2003-2009 gridded 

at 1/3 degree resolution. b) Average SCIAMACHY anomaly over just the Four Corners region from 

2003-2009. c) EDGAR v4.2 gridded methane emissions (smoothed with a Gaussian filter). d) 

Gridded WRF-Chem simulated methane anomaly using 3.5 times EDGAR v4.2 emissions for the 

Four Corners region. 

 
4.3.4 Case Studies 
4.3.4.1 Urban CO2: Los Angeles and Mumbai 

Kort et al., 2012 found that robust urban enhancements were observable in both Los Angeles 

and Mumbai. In Mumbai, observations were limited to single soundings, which were still sufficient 

to detect elevated CO2 levels over the urban domain. In Los Angeles, more plentiful observations 

were collected, which enabled authors to infer the average basin enhancement of 3.2 ppm in XCO2 

relative to the desert background. Consistency with ground-based observations confirms this to be a 

robust observation [Kort et al., 2012]. Assuming similar observations were made in a future year, a 

change in the column of 0.7 ppm would be detectable at the 95% level. This would correspond with 
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a 22% change in emissions if there is no change in the basin ventilation time or biospheric fluxes. 

This calculation assumes that the average GOSAT observations of elevated levels in the basin are 

representative of the entire basin, that sources are stationary in time and space, and meteorology 

isn’t changing. A higher density of observations in space and time would greatly reduce the 

assumptions necessary, and targeted, high-resolution transport modeling would enable the 

determination of the relative impact of varying ventilation rates. Thus, this case study demonstrates 

the capability of space-based observations to observed urban CO2 emissions, but that for 

quantification, attribution of sources, and tracking trends in emissions, improved spatial-temporal 

sampling would be invaluable. For tracking emission trends, it will also be important for long-term, 

sustained, consistent observations to establish sufficient time series for trend detection. 

 

4.3.4.2 CH4: Four Corners 
In addition to identifying the Four Corners region as an anomalous location of high methane 

levels (Figure 4.3-2), a valuable demonstration of space-based capability, Kort et al., 2014 directly 

quantified the methane emissions from this domain. By fitting a linear model between observations 

and corresponding values simulated with WRF-Chem- EDGAR enables the derivation of a 

multiplicative factor to apply to the EDGAR inventory to best match the observations (Figure 4.3-3). 

For Four Corners, this results in an emissions estimate of 0.59 Tg CH4/yr – a number far exceeding 

best inventory estimates at the time. Importantly, ground-based validation was applied in the Kort et 

al., 2014 study. This was further verified with a later, independent set of aircraft measurements, 

which found emissions consistent with the space-based estimate [Smith et al., 2017].     
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Figure 4.3-3. From Kort et al., 2014. Observed (SCIAMACHY 2003-2009 average) and simulated 

(WRF-Chem) methane over Four Corners, with slope (scaling factor) shown in solid line.  

 
This case study illustrates that space-based methane observations can be used to identify regions 

with anomalously high emissions, and combining these measurements with a transport model can 

lead to direct quantification of emissions. Ground-based validation is essential to validate any 

space-based sensor and method for this type of regional estimation. Further, with any space-based 

approach measuring only methane, attribution to specific methane sources cannot be achieved 

unless the spatial resolution is greatly increased. Higher spatial resolution would allow individual 

plumes to be directly detected and attributed. In the absence of this resolution improvement overall 

flux estimates must focus on total emissions only, as opposed to trying to infer specific processes or 

leak rates. 
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4.4 Monitoring anthropogenic CO2 and CH4 emission by GOSAT observations 
Rajesh Janardanan1, Shamil Maksyutov1, Tomohiro Oda2,3, Makoto Saito1, Akihiko Ito1, Yukio 

Yoshida1, and Tsuneo Matsunaga1 

1) National Institute for Environmental Studies (NIES), Japan 

2) Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, 

Maryland, USA 

3) Goddard Earth Science Technologies and Research, Universities Space Research Association, 

Columbia, Maryland, USA 

 
4.4.1 Introduction 

The Greenhouse gases Observing SATellite (GOSAT), developed jointly by the Ministry of the 

Environment (MOE), the National Institute for Environmental Studies (NIES), and the Japan 

Aerospace Exploration Agency (JAXA) is the world’s first satellite designed specifically to monitor 

greenhouse gases from space. The satellite has continued to fulfill its main mission to monitor 

atmospheric carbon dioxide (CO2) and methane (CH4) concentrations from space since its launch in 

January 2009.  

Here an overview of a study by Janardanan et al., 2016, and Janardanan et al., 2017, 

demonstrating the capability of GOSAT to observe anthropogenic emission signature as abundance 

in XCO2 and XCH4 respectively from surrounding cleaner background values and compare it with 

emission inventory-based high-resolution simulation for regional emission monitoring technique, is 

given. 

 
4.4.2 Data 
4.4.2.1 GHG Concentration Data 

Janardanan et al., 2016 utilized the National Institute for Environmental Studies GOSAT Short 

Wavelength InfraRed XCO2

 

Level 2 product (NIES SWIR L2 v02.21) during the period of June 

2009 to December 2012.  

Janardanan et al., 2017 utilized the National Institute for Environmental Studies GOSAT Short 

Wavelength InfraRed XCH4 Level 2 product (NIES SWIR L2 v02.21) during June 2009 to 

December 2012.  

The data processing and related information can be found in GOSAT Data Archive Service 

(GDAS) website, https://data2.gosat.nies.go.jp/. 

 
4.4.2.2 CO2 emission inventory 

Janardanan et al., 2016 used the Open-source Data Inventory for Anthropogenic Carbon 

dioxide (ODIAC) (Oda and Maksyutov, 2011) as fossil fuel CO2 emission for the period 2009-2012 
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at 0.1 degree resolution. To correct GOSAT XCO2 observations for the contribution of CO2 

emission from biomass burning in the GOSAT XCO2 (ΔXCO2,fire), they performed Lagrangian 

retroplume simulation with fire emissions prescribed by the Global Fire Assimilation System 

(GFAS version 1.1, (Kaiser et al., 2012)). The influence of terrestrial biospheric CO2 fluxes on 

XCO2 (ΔXCO2,bio) is estimated in a similar way using the Vegetation Integrative Simulator of Trace 

gases (VISIT) (Ito, 2010; Saito et al., 2014). The meteorological reanalysis data used for transport 

modeling were taken from the Japanese 25 year reanalysis (JRA-25)/Japan Meteorological Agency 

(JMA) Climate Data Assimilation System (JCDAS, Onogi et al. (2007)). 

 
4.4.2.3 CH4 emission inventory 

Janardanan et al., 2017 used, used the anthropogenic methane emission inventory (Emission 

Database for Global Atmospheric Research–EDGAR v4.2 FT2010 (Olivier and 

Janssens-Maehnhout, 2012)), for the period 2009-2010 at 0.1 degree resolution for the 

high-resolution transport modeling. For the years 2011 and 2012 the data are scaled using the global 

total value of those years as reported by EDGAR. In order to account for the contribution from 

wetland emission and soil sink of methane, model simulated values were adjusted in the 

observations. For this, they used fluxes from Vegetation Integrative SImulator for Trace gases 

model (VISIT; Ito and Inatomi, 2012). 

 
4.4.3 Method 
4.4.3.1 Outline 

Janardanan et al., 2016 used a Lagrangian particle dispersion model, FLEXPART (Stohl et al., 

1998, 2005) to simulate XCO2 abundance (ΔXCO2,sim) caused by local emissions from fossil fuel 

combustion at all satellite observation locations. Based on these model estimates, they select 

satellite observations influenced substantially by fossil fuel emissions (ΔXCO2,sim > 0.1 ppm). 

Observed enhancements (ΔXCO2,obs) were computed as deviations from the background defined as 

a monthly mean of all “clean” (observations that are not influenced by emission from fossil fuel) 

measurements in the area around the observation point (average of observations with low 

contribution from fossil fuel sources in 10° × 10° boxes). These simulated and observed XCO2 

abundance was binned for each 0.2 ppm to reduce the stochastic errors of the order of 2 ppm 

(Yoshida et al., 2013) associated with each individual satellite observation, and subjected to 

weighted linear regression analysis. The regression slope gives a scale factor which indicates the 

agreement between observations and inventory based XCO2 abundance and thus any biases in the 

inventory. The method is illustrated in Figure 4.4-1. Similarly in Janardanan et al., 2017, XCH4  

abundance were estimated from GOSAT XCH4 data and the inventory based estimates. 
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4.4.4 Case Study results  

4.4.4.1 Results from Janardanan et al., 2016 
The objective of this study was to develop a technique to find XCO2 abundance from GOSAT 

observations and to relate it with XCO2 abundance simulated using a high resolution emission 

inventory (as shown in Figure 4.4-2). They demonstrated that over sufficiently large regions, the 

XCO2 abundance estimated from GOSAT observations can be represented as a function of 

inventory based simulated XCO2 abundance and the regression coefficient (slope value) is 

indicative of potential biases in the emission inventory. In this study, for the global case, observed 

and simulated enhancements showed good agreement with a slope of 1.21 ± 0.21 (p < 0.05); Figure 

4.4-3. The error in the slope accounts for combined effect of noisy observational data, errors in 

background estimate, and dispersion model, and deviation of enhancements from regression line. In 

the Northern Hemisphere, the slope value is 1.12 ± 0.22 (p < 0.05), and for Eurasia they got value of 

1.24 ± 0.27 (p < 0.05). In the case of these three large domains, though the slope differ from unity 

(within the uncertainty range), the observed and simulated enhancements are very close to the 

“identity line” suggesting that the emissions from strong point sources are well captured in the 

model. However, when this analysis is carried out for East Asia, the Sr value is similar (1.22 ± 0.32, 

(p < 0.05); Figure 4.4-3d), but the regression line has a large offset from the identity line (identity 

line outside observation uncertainty range)—indicating significant difference between the mean 

simulated (ΔXCO2,sim) and observed XCO2 abundance (ΔXCO2,obs). For North America, they found 

an Sr value of 1.05 ± 0.38 (p < 0.1), showing good match between model and observations though 

the uncertainty is largest among the five regions due to the smaller number of observations 

(Figure 4.4-3e). 
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Figure 4.4-1. Schematic showing the procedure of data processing explained in section 4.4.3

 
Figure 4.4-2. a) Simulated fossil fuel enhancements in XCO2 and b) GOSAT observed XCO2 

anomalies averaged over 2° × 2° grid over anthropogenic sources regions over the globe for 

2009–2012. The macro regions—East Asia (10–60°N, 60–150°E), Eurasia (10–60°N, 0–150°E), 

North America (10–50°N, 130–60°W), and the Northern Hemisphere (10–70°N, 130°W–150°E) are 

shown by colored rectangles. Adapted from Janardanan et. al., 2016. 
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Figure 4.4-3. The regression between observed and simulated XCO2 abundance averaged over 

major anthropogenic source regions. Vertical thin lines show the standard error of the mean 

observed enhancements. The grey dashed line is the identity line and the error-weighted regression 

is shown as the green dashed line. The grey bars give the number of observations in thousands. 

Adapted from Janardanan et al., 2016 

The difference between the inventory and observations over East Asia suggested by regression 

analysis imply that ODIAC inventory emissions are lower than needed to match the observations. 

This region is known for significant differences between various fossil fuel CO2 emission inventories 

(eg. Guan et al., 2012; Liu et al., 2015). For example, a recent study (Guan et al., 2012) estimated 

Chinese provincial total CO2 emissions of 9.08 Gt yr−1 for 2010, which is 1.4 Gt yr−1 more than the 

China’s national statistical report. Liu et al. (2015) reported that the Chinese energy consumption was 

10% higher than the Chinese national statistics. Another study (Zhao et al., 2012) recompiling the 

Chinese CO2 emissions using provincial level energy statistics revealed that CO2 emission from fossil 

fuel and cement production showed notable differences with accepted estimates (e.g., 5–10% higher 

than CDIAC (Boden et al., 2013) during 2005–2009). The discrepancy between simulated and 

observed XCO2 abundance (22%) and its uncertainty (32%) over East Asia are comparable to the 

uncertainties (~15%) associated with fossil fuel CO2 emission over this region. 
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4.4.4.2 Results from Janardanan et al., 2017 
Janardanan et al., 2017, conducted the study to utilize GOSAT satellite observations to 

independently monitor methane emissions from anthropogenic sources. The regression is carried 

out to a maximum XCH4 abundance of 20 ppb only for a 2 ppb bin averaged values, considering the 

decreasing number of observations in each bin and the growing error in binned values. The large 

continental regions having significant emission from anthropogenic sources are north America, East 

Asia, Europe and the Middle East. In this analysis they selected North America and East Asia based 

on their contribution to global emissions and availability of large number of useful satellite 

observations. For the global case, the model-observation regression gives a regression coefficient 

(slope) of 1.15±0.03 (Figure 4.4-5; R2 =0.97). For East Asia, the regression slope is 0.70±0.05 (R2 

=0.96) and for North America it is 1.28±0.01 (R2=0.65). North American regions show the largest 
difference between the GOSAT observed and EDGAR based XCH4 anomaly, compared to other 

regions. The regression slope shows around 28% deviation from unity. This shows a mismatch 

between observations based and inventory based XCH4 anomalies over northern America and 

thereby a potential underestimation in the emission inventory. Over the East Asian region, the 

model-observation mismatch is approximately 30%, emission being higher than suggested by 

observation derived enhancements.  
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Figure 4.4-4. The simulated (a) and GOSAT observed (b) XCH4 anomaly (ppb) (∆XCH4,sim and 

∆XCH4,obs respectively) aggregated at 2° grid for a period 2009-2012. The grids with simulated 
XCH4 abundance greater than 5 ppb in average are shown. The regions used in analysis are marked 

as rectangles in upper panel. Adapted from Janardanan et al., 2017 

 
Figure 4.4-5. The regression between modeled (EDGAR) and observed (GOSAT) XCH4 abundance 

for a) the Globe, b) East Asia and c) North America. The inset values (m) are the regression 

coefficient (unit less) with the associated estimation error. The light shading represents the standard 

error in each bin. The colored lines show the regression model and the grey lines show the identity 

line. Adapted from Janardanan et al., 2017 
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4.5 Anthropogenic methane emissions from SCIAMACHY and GOSAT 
M. Buchwitz1, O. Schneising-Weigel1, M. Reuter1, H. Bovensmann1, and J. P. Burrows1 

1) Institute of Environmental Physics (IUP), University of Bremen, Germany 

 
4.5.1 Introduction 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) 

(Burrows et al., 1995; Bovensmann et al., 1999) onboard of the European environmental satellite 

ENVISAT was operational from March 2002 to April 2012. SCIAMACHY was a passive remote 

sensing spectrometer observing backscattered, reflected, transmitted or emitted radiation from the 

atmosphere and Earth's surface, in the wavelength range between 240 and 2380 nm. The spatial 

resolution depends on spectral region but was typically 30 km along track and 60 km across track. 

Global coverage at the equator was achieved after six days (swath width 960 km; nominal 

measurement sequence: 50% nadir (downlooking) and 50% limb (scanning the atmosphere while 

looking to the horizon and above)). For the retrieval of column-averaged dry-air mole fractions of 

methane (CH4), i.e., XCH4, two spectral regions have been used: the 1.6 μm region containing CH4 

(and CO2) absorption lines and the 0.76 μm spectral region covering the oxygen (O2) A-band. 

Details on the retrieved XCH4 are given in a number of peer-reviewed publications (e.g., Buchwitz 

et al., 2000, 2015, 2016; Schneising et al., 2009, 2011). 

In addition, an ensemble of GOSAT (Kuze et al., 2009) XCH4 retrievals (see Buchwitz et al., 

2016, and references given therein) have been used. 

In the following results from two studies related to anthropogenic CH4 emissions, which have 

been published in the peer-reviewed scientific literature (Schneising et al., 2014a; Buchwitz et al., 

2017), are summarized.  

 
4.5.2 Data 
4.5.2.1 GHG Concentration Data 

Schneising et al., 2014a, used SCIAMACHY XCH4 retrievals during the time period 

2006-2011. 

Buchwitz et al., 2017, used an ensemble of SCIAMACHY and GOSAT XCH4 retrievals 

(described in Buchwitz et al., 2016), which has been generated within the framework of the 

GHG-CCI project (http://www.esa-ghg-cci.org/) of ESA’s Climate Change Initiative (Hollmann et 

al., 2013). Buchwitz et al., 2017, also used CAMS (Copernicus Atmosphere Monitoring Service; 

http://atmosphere.copernicus.eu/) a posteriori methane emissions and corresponding atmospheric 

methane version v10-S1NOAA as generated via the TM5-4DVAR assimilation system assimilating 

National Oceanic and Atmospheric Administration (NOAA) CH4 surface observations (an earlier 

version of this method and resulting data products is described in Bergamaschi et al., 2009). In 
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addition, a high-resolution methane model data set over the USA has been used (Turner et al., 

2015). 

 
4.5.2.2 Other Data 

Schneising et al., 2014a, used meteorological information (primarily near surface winds) as 

provided by the ERA-Interim reanalysis product (Dee et al., 2011) of the European Centre for 

Medium-RangeWeather Forecasts (ECMWF). Furthermore, Schneising et al., 2014a, used well 

positions taken from the Fracking Chemical Database (SkyTruth, 2013) complemented by data for 

the Canadian part of the Bakken basin (U.S. Energy Information Administration, 2012). 

Buchwitz et al., 2014, used EDGAR version 4.2 anthropogenic methane emissions (obtained 

from http://edgar.jrc.ec.europa.eu/gallery.php?release=v42&substance=CH4&sector=TOTALS). 

 
4.5.3 Methods 
4.5.3.1 Outline 

Different methods have been used in each of the two publications. These methods are shortly 

described in the following sub-sections. 

 

4.5.3.2 Methodology used by Schneising et al., 2014a 
Schneising et al., 2014a, used a simple mass-balance approach to obtain estimates of methane 

emission differences between two three-year time periods (2006-2008 and 2009-2011) from 

SCIAMACHY XCH4 retrievals for three major North American oil and gas production regions.     

For details please see Schneising et al., 2014a. 

 

4.5.3.3 Methodology used by Buchwitz et al, 2017 
Buchwitz et al., 2017, also used a simple data-driven mass-balance approach to obtain 

estimates of annual methane emissions during 2003-2014 from annually averaged maps generated 

from an ensemble of SCIAMACHY and GOSAT XCH4 retrievals. The method has been applied to 

four methane “hot spot” regions, i.e., regions showing regionally elevated XCH4 in satellite-derived 

XCH4 maps. The emission results have been compared with EDGAR and information available in 

the peer-reviewed literature. For details please see Buchwitz et al., 2017. 

 

4.5.4 Case Study Results 
In the following two sub-sections the results from these two case studies are shortly presented 

and summarized. 

 

4.5.4.1 Results obtained by Schneising et al., 2014a 
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The main results obtained by Schneising et al., 2014a, are shown in Fig. 4.5-1. Shown on the 

left hand side is the absolute methane emission increase for 2009–2011 relative to 2006–2008 along 

with the 1-sigma uncertainty range for the two “fracking areas” Bakken and Eagle Ford in the USA 

as obtained from the SCIAMACHY XCH4 retrievals. On the right relative methane leakage rates 

are shown for Bakken and Eagle Ford in comparison to published values from other gas and/or oil 

production regions in the USA and EPA estimates for natural gas and petroleum. Schneising et al., 

2014a, conclude that current inventories likely underestimate fugitive methane emissions. 

 

 

Figure 4.5-1. Estimated methane emissions are shown for the targeted regions 

Bakken in light brown, and Eagle Ford in dark brown. Shown is the absolute  

emission increase (2009–2011 relative to 2006–2008) in the left panel, and the 

leakage rate relative to production in the right panel, in each case together with 

the 1𝜎𝜎-uncertainty ranges. For comparison, leakage estimates from previous 
studies in Marcellus (2012) (Caulton et al., 2014), Uintah (2012) (Karion et al., 

2013), and Denver-Julesburg (2008) (Pétron et al., 2012) (yellow, blue, and 

magenta) are shown together with the EPA bottom-up inventory estimates for 

natural gas and petroleum systems (2011) (U.S. Environmental Protection Agency, 

2014) (grey) in the right panel. (from: Schneising et al., 2014a; their Fig. 7). 
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4.5.4.2 Results obtained by Buchwitz et al., 2017 
Buchwitz et al., 2017, obtained annual methane emissions during 2003-2014 from an ensemble 

of SCIAMACHY and GOSAT XCH4 retrievals. Their main results are shown in Fig. 4.5-2 and 

summarized in Tab. 4.5-1. They applied their method to four source areas: Four Corners in the 

south-western USA, the southern part of the Central Valley in California, Azerbaijan, and 

Turkmenistan. They found that their estimated emissions are in good agreement with independently 

derived estimates for Four Corners and Azerbaijan. For the Central Valley and Turkmenistan their 

estimated annual emissions are higher compared to the EDGAR v4.2 anthropogenic emission 

inventory. For Turkmenistan they found on average about 50% higher emissions with their annual 

emission uncertainty estimates overlapping with the EDGAR emissions. For the region around 

Bakersfield located in the Central Valley of California, a region of significant oil and gas production 

and large expected methane emissions from dairy and livestock operations, Buchwitz et al., 2017, 

obtained mean emissions in the range 1.05–1.55 MtCH4/yr, depending on satellite data product. 

This is about a factor of 5–8 higher than the total methane emissions as given in the EDGAR v4.2 

inventory but of similar magnitude as reported in Jeong et al. (2013) (0.85–0.94 MtCH4/yr) based 

on inverse modelling of tower measurements. The Buchwitz et al., 2017, findings also corroborate 

published results from CalNex campaign aircraft observations during May to June 2010 (Wecht et 

al., 2014b) showing high methane concentrations over the southern part of the Central Valley, in the 

San Joaquin Valley, compared to other parts of California and concluding that EDGAR emissions in 

this area need to be scaled with factors up to around 5. They conclude that livestock emissions in 

EDGAR are significantly underestimated. Another more recent study (Jeong et al., 2014) presented 

a new bottom-up methane inventory for the year 2010 for California, concluding that their 

emissions are 3–7 times higher compared to official California bottom-up inventories for the 

petroleum and natural gas production sectors. Also the new US Environmental Protection Agency 

(EPA) methane emission inventory (Maasakkers et al., 2016) shows significantly larger emission in 

the area around Bakersfield compared to EDGAR v4.2. Nevertheless, the Buchwitz et al., 2017, 

results need to be interpreted with care as the uncertainty of their annual emission estimates is large 

and it cannot be entirely ruled out that their estimates are somewhat overestimated e.g. due to 

possible methane accumulation in the valley. 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 4.5-2: Annual methane emissions as obtained from SCIAMACHY and GOSAT for the three 

regions: (a) Four Corners in the USA, (b) Central Valley, California, USA, and (c) Turkmenistan 

compared with EDGAR and literature values. The results are summarized in Tab. 4.5-1, where 

additional details are given. Source: Buchwitz et al., 2017.   
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Table 4.5-1. Summary of the main results of the study of Buchwitz et al., 2017, listing the estimated 

methane emissions for four methane “hot spot” areas in terms of annual mean value and 1-sigma 

range obtained from computing the standard deviation of the annual emissions. The satellite-derived 

annual methane emissions are covering the time period 2003-2009 for SCIAMACHY and 

2009-2014 for GOSAT. The results have been obtained using two data sets from SCIAMACHY 

(obtained with the WFMD and IMAP retrieval algorithms) and two from GOSAT (obtained with the 

algorithms OCPR and SRFP (also known as RemoTeC)); for details (and references) on the 

algorithms and corresponding data products see Buchwitz et al., 2016. Source: Buchwitz et al., 

2017.    
 Estimated methane emissions [MtCH4/year]  

Comments /  
Other estimates 

 SCIAMACHY GOSAT 
Source region WFMD IMAP OCPR SRFP 

(RemoTeC) 
Four Corners 0.50  

[0.40, 0.59] 
0.57  

[0.34, 0.80] 
0.45  

[0.14, 0.76] 
0.42  

[0.20, 0.64] 
Kort et al., 2014 (*): 

0.59 [0.54, 0.64] 
Turner et al., 2015: 

[0.45, 1.39] 
EDGAR v4.2: 

0.17 
Central Valley 
(southern part) 

1.05  
[0.53, 1.57] 

1.10  
[0.92, 1.28] 

 

1.35  
[0.96, 1.75] 

1.55  
[1.15, 1.95] 

EDGAR v4.2: 
0.19 

Jeong et al., 2013: 
0.85 – 0.94 (for their 

region R12) 
Azerbaijan 0.60  

[-0.01, 1.21] 
0.53  

[0.23, 0.83] 
0.51  

[-0.16, 1.18] 
- EDGAR v4.2 

(FT2012): 
0.74 

Turkmenistan 1.89  
[1.22, 2.55] 

1.93  
[1.66, 2.19] 

2.08  
[1.67, 2.49] 

1.85  
[1.31, 2.39] 

EDGAR v4.2 
(FT2012): 

1.33 

 (*) Kort et al., 2014, report the 2-sigma range [0.50, 0.67], not the (approximate) 1-sigma range listed here. 
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4.6 A case study estimating global and regional methane emissions using 
GOSAT 
Alexander J. Turner1 

1) Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA. 

 
4.6.1 Introduction 

Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources 

(Kirschke et al., 2013; Saunois et al., 2016). A difficulty in quantifying anthropogenic emissions is 

that they tend to originate from a large number of relatively small and often transient point sources 

such as livestock operations, oil/gas leaks, landfills, and coal mine ventilation. Atmospheric 

methane observations from surface and aircraft have been used to detect and quantify emissions 

(e.g., Houweling et al., 2016; Miller et al., 2013; Caulton et al., 2014; Karion et al., 2013, 2015; 

Lavoie et al., 2015; Conley et al., 2016; Peischl et al., 2012, 2015, 2016) but are limited in spatial 

and temporal coverage. Satellite measurements are attractive for the dense and continuous coverage 

they provide. 

Satellite-based observations by solar backscatter in the shortwave infrared (SWIR) from 

low-Earth orbit have been available since 2003 from the SCIAMACHY instrument (2003–2012; 

Frankenberg et al., 2005) and from the GOSAT instrument (2009–present; Kuze et al., 2009, 2016). 

SWIR instruments measure the atmospheric column of methane with near-unit sensitivity down to 

the surface. SCIAMACHY and GOSAT demonstrated the capability for high-precision (<1%) 

measurements of methane from space (Buchwitz et al., 2015). GOSAT has higher precision and 

pixel resolution than SCIAMACHY (0.6% and 10 km×10 km vs. 1.5% and 30 km×60 km), but the 

observations are not as dense. The GOSAT retrievals are in good agreement with surface-based 

column measurements (Parker et al., 2011; Butz et al., 2011; Schepers et al., 2012; Fraser et al., 

2013; Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015). Here we discuss results using 

GOSAT to estimate global and regional methane emissions sources as well as the mathematical 

framework for estimating methane sources using satellite observations. Results presented here were 

originally published in Turner et al. (2015) and Turner and Jacob (2015). 

 

4.6.2 Inversion methodology 
4.6.2.1 Background 

Inverse models quantify the state variables driving the evolution of a physical system by using 

observations of that system. This requires a physical model F , known as the forward model, that 
relates a set of input variables x  (state vector) to a set of output variables y  (observation vector),  

  
.)(= εxFy +  (1) 
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The observational error ε  includes contributions from both the forward model and the 

measurements. Solution to the inverse problem involves statistical optimization to achieve a best 
error-weighted estimate of x  given y . 

A critical step in solving the inverse problem is determining the amount of information 

contained in the observations and choosing the state vector accordingly. This is a non-trivial 

problem when using large observational data sets with large errors, such as those from satellite 

observations. Methane concentrations can be predicted on the basis of emissions by using a 

chemical transport model (CTM) that solves the 3-D continuity equation for methane 

concentrations. Here the CTM is the forward model F , the satellite provides a large observation 
vector y , and we need to choose the resolution at which to optimize the methane emission vector 

x . 

Reducing the dimensionality of the state vector in the inverse problem has two main 

advantages. It improves the observational constraints on individual state vector elements and it 

facilitates analytical solution. Reduction can be achieved by aggregating state vector elements. For 

a state vector of gridded time-dependent emissions, the state vector can be reduced by aggregating 

grid cells and time periods. However, this introduces error in the inversion as the underlying spatial 

and temporal patterns of the aggregated emissions are now imposed from prior knowledge and not 

allowed to be optimized as part of the inversion. The resulting error is called the aggregation error 

(Kaminski and Heimann, 2001; Kaminski et al., 2001; Schuh et al., 2009). 

 
4.6.2.2 Formulating the inverse problem 

Inverse problems are commonly solved using Bayes’ theorem, 

 

 ),()|()|( xxyyx PPP ∝  (2) 
 

where )|( yxP  is the posterior probability density function (pdf) of the state vector x  ( 1×n ) 

given a vector of observations y  ( 1×m ), )(xP  is the prior pdf of x , and )|( xyP  is the 

conditional pdf of y  given the true value of x . Assuming Gaussian distributions for )|( xyP  and 

)(xP  allows us to write the posterior pdf as  

 

 
( ) ( ) ( ) ( ) ,

2
1)()(

2
1exp)|( a

1
aa

1
O







 −−−−−−∝ −− xxSxxxFySxFyyx TTP

 (3) 
 

where ax  is the 1×n  prior state vector, OS  is the mm×  observational error covariance matrix, 

and aS  is the nn×  prior error covariance matrix. Here and elsewhere, our notation and 



Chapter 4  Case Studies 

4.6-3 

terminology follow that of Rodgers (2000). The most probable solution x̂  (called the maximum a 
posteriori or MAP) is defined by the maximum of )|( yxP , i.e., the minimum of the cost function 

)(J x :  

 
( ) ( ) ( ) ( ).

2
1)()(

2
1=)(J a

1
aa

1
O xxSxxxFySxFyx −−+−− −− TT

 (4) 

This involves solving  

 ( ) ( ) .=)()(=J a
1

a
1

O 0xxSyxFSxFxx −+−∇∇ −−T
 (5) 

Solution to Eq. (5) can be done analytically if F  is linear; i.e., cKxxF +=)(  where 

xyFK x ∂∂∇≡ /=  is the Jacobian of F  and c  is a constant that can be set to zero in the general 

case by subtracting c  from the observations. This yields 

 ( ),=ˆ aa KxyGxx −+  (6) 

where 1
O

ˆ= −SKSG T  is the gain matrix and Ŝ  is the posterior error covariance matrix,  

 ( ) 11
a

1
O=ˆ −−− +SKSKS T

 (7) 

The MAP solution can also be expressed in terms of the true value x  as  

 ( ) ,=ˆ aa GεxxAxx +−+  (8) 

where A  is the averaging kernel matrix that measures the error reduction resulting from the 

observations 

 1
a

ˆ== −− SSIGKA  (9) 

and Gε  is the observation error in state space with error covariance matrix TGGSO . We have 

assumed here that errors are unbiased, as is standard practice in the inverse modeling literature. An 
observational error bias Ob  would propagate as a bias OGb  in the solution x̂  in Eq. (8). 

The analytical solution to the inverse problem thus provides full error characterization as part 

of the solution. It does require that the forward model be linear. The Jacobian matrix must generally 

be constructed numerically, requiring n  sensitivity simulations with the forward model. 

Subsequent matrix operations are also of dimension n . This limits the practical size of the state 

vector. The matrix operations also depend on the dimension m  of the observation vector, but this 

can be easily addressed by splitting that vector into uncorrelated packets, a method known as 

sequential updating (Rodgers, 2000). Turner and Jacob (2015) provides a detailed description of the 

aggregation and smoothing errors for reduced-dimension state vectors. 
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4.6.2.3 Aggregation methods 
Aggregation of state vector elements to reduce the state vector dimension introduces 

aggregation error, as described in Turner and Jacob (2015). The aggregation error can be reduced by 

grouping elements with correlated errors. Analyzing the off-diagonal structure of a precisely 

constructed prior error correlation matrix would provide the best objective way to carry out the 

aggregation, as described by Bocquet (2009), Bocquet et al. (2011), and Wu et al. (2011). We 

generally lack such information but do have some qualitative knowledge of prior error correlation 

that can be used to optimize the aggregation. By aggregating regions that have correlated errors we 

can exploit additional information that would otherwise be neglected in a native-resolution 

inversion assuming (by default) uncorrelated errors. Here we discuss how one can use Gaussian 

Mixture Models to reduce the dimension of the state vector. 

This method enable consideration of similarity factors besides spatial proximity when 

aggregating state vector elements. These similarity factors are expressed by vectors of dimension n 

describing correlative properties of the original native-resolution state vector elements. In the case 

of a methane source inversion, for example, we can choose as similarity vectors latitude and 

longitude to account for spatial proximity, but also wetland fraction to account for error correlations 

in the bottom-up wetland emission estimate used as prior. 

Table 4.6-1 lists the similarity vectors chosen for our example problem of estimating methane 

emissions (Turner et al., 2015). The first two vectors account for spatial proximity, the third 

represents the scaling factors from the first iteration of an adjoint-based inversion at native 

resolution (Wecht et al., 2014a), and the others are the source type patterns from the bottom-up 

inventories used as prior. All similarity vectors are normalized and then weighted by judgment of 

their importance. We choose here to include initial scaling factors from the adjoint-based inversion 

because we have them available and they can serve to correct any prior patterns that are grossly 

inconsistent with the observations, or to identify local emission hotspots missing from the prior. 

One iteration of the adjoint-based inversion is computationally inexpensive and is sufficient to pick 

up major departures from the prior. 
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Table 4.6-1: Similarity vectors for inverting methane emissions in North America a .  

 Similarity  Weighting  

vector  factor b   
1.  Latitude c   1.00  

2.  Longitude d   1.00  

3.  Initial scaling factors e   0.15  

4.  Wetland  0.31  

5.  Livestock  0.22  

6.  Oil/gas  0.16  

7.  Waste  0.15  

8.  Coal  0.06  

9.  Soil absorption  0.05  

10.  Termites  0.02  

11.  Biomass burning  0.02  

12.  Biofuel  0.01  

13.  Rice  0.01  

14.  Other  0.01  
a  The 14=K  similarity vectors describe prior error correlation criteria for the native-resolution 

state vector, representing here the methane emission in North America at the 1/2◦×2/3◦ resolution 
of the GEOS-Chem chemical transport model. The criteria are normalized and then weighted 

(weighting factor). Criteria 4–14 are prior emission patterns used in the GEOS-Chem model (Wecht 

et al., 2014a; Turner et al., 2015). 
b  The weighting factors (dimensionless) measure the estimated relative importance of the different 
similarity criteria in determining prior error correlations in the state vector. For the prior emission 

patterns these weighting factors are the fractional contributions to total prior emissions in North 

America. 
c  Distance in kilometers from the equator. 
d  Distance in kilometers from the prime meridian. 
e  Initial scaling factors from one iteration of an adjoint inversion at the native resolution.   

 
Let { }Kcc ,,1   represent the K  similarity vectors chosen for the problem ( 14=K  in our 

example of Table 4.6-1). We assemble them into a Kn×  similarity matrix C . We will also make 

use of the ensemble of similarity vector values for individual state vector elements, which we 
assemble into vectors },,{ 1

'
n

' cc   representing the rows of C . Thus:  
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In this work all of the aggregation methods except for grid coarsening will use the same similarity 

matrix to construct the restriction operator. 
This approach of using a similarity matrix C  to account for prior error covariances bears 

some resemblance to the geostatistical approach for inverse modeling (e.g., Michalak et al., 2004, 

2005; Gourdji et al., 2008; Miller et al., 2012). The geostatistical approach specifies the prior 
estimate as βCx =a , where β  is a vector of unknown drift coefficients to be optimized as part of 

the inversion. Here we use the similarity matrix to reduce the dimension of the state vector, rather 

than just as a choice of prior constraints. 

Here we use a Gaussian mixture model (GMM; Bishop 2007) to project the native-resolution 
state vector onto p  Gaussian pdfs using radial basis functions (RBFs). Mixture models are 

probabilistic models for representing a population comprised of p  subpopulations. Each 

subpopulation is assumed to follow a pdf, in this case Gaussian. The Gaussians are K -dimensional 

where K  is the number of similarity criteria. Each native-resolution state vector element is fit to 

this ensemble of Gaussians using RBFs as weighting factors. 

The first step in constructing the GMM is to define a np×  weighting matrix 

T
p ],,,[= 21 wwwW  . Each element jiw ,  of this weighting matrix is the relative probability for 

native-resolution state vector element j  to be described by Gaussian subpopulation i ; i.e., “how 

much does element j  look like Gaussian i ?”. It is given by  

 .
),|(

),|(
=

1=

,

kk
'
jj

p

k

ii
'
ji

jiw
Λc

Λc

µπ

µπ

N

N

∑
 (11) 

Here 
'
jc  is the j th row of the similarity matrix C , iµ  is a K×1  row vector of means for the 

i th Gaussian, iΛ  is a KK ×  covariance matrix for the i th Gaussian, and [ ]Tpππ ,,= 1 π  is 

the relative weight of the p  Gaussians in the mixture. ( )ii
'
j Λc ,| µN  denotes the probability 

density of vector '
jc  on the normal distribution of Gaussian i . We define a Kp×  matrix M  

with rows iµ  and a pKK ××  third-order tensor ],,[= 1 pΛΛ L  as the set of covariance 

matrices. 
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Projection of the native-resolution state vector onto the GMM involves four unknowns: W , 

π , M , and L . This is solved by constructing a cost function to estimate the parameters of the 

Gaussians in the mixture model using maximum likelihood:  

 






∑∑ ),|'(ln=),,|(J

1=1=
GMM iiji

p

i

n

j
ΛcC µππ NLM  (12) 

Starting from an initial guess for π , M , and L  we compute the weight matrix W  using Eq. (11). 

We then differentiate the cost function with respect to π , M , and L , and set the derivative to zero 

to obtain (see Bishop, 2007) 

 jji

n

j
ii w '= ,

1=
c∑Ψµ  (13) 

  

 ( ) ( )ij
T

ijji

n

j
ii w µµ −−Ψ∑ ''= ,

1=
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i

i nΨ
1=π  (15) 

where:  

 
ji

n

j
i w ,1=

1=∑Ψ  (16) 

 

The weights are re-calculated from the updated guesses of W , π , M , and L  from Eqs. (13) 
to (16), and so on until convergence. The final weights define the restriction operator as WΓ =ω . 

The computational complexity for the expectation-maximization algorithm is )( 2pnnK +O  (Chen 

et al., 2007); however, the actual runtime will be largely dictated by the convergence criteria. Here 

we use an absolute tolerance of 1010< −τ  where  

 åMM jiji
ji

,,= −∑∑τ  

 åLL kjikji
kji

,,,, −+ ∑∑∑  

 ,å
ii

i
ππ −+∑  (17) 

and the superscript star indicates the value from the previous iteration. 
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Figure 4.6-1: Gaussian mixture model (GMM) representation of methane emissions in Southern 

California with Gaussian pdfs as state vector elements. The Gaussians are constructed from a 

similarity matrix for methane emissions on the 1/2◦×2/3◦ horizontal resolution of the GEOS-Chem 
CTM used as forward model for the inversion. The figure shows the dominant three Gaussians for 

Southern California with contours delineating the 0.5, 1.0, 1.5, and 2.0σ  spreads for the latitude–

longitude dimensions. The RBF weights w1, w2, and w3, and of the three Gaussians for each 1/2◦× 

2/3◦ grid square are also shown along with their sum. (from: Turner and Jacob, 2015; their Fig. 2). 
 

The GMM allows each native-resolution state vector element to be represented by a unique 

linear combination of the Gaussians through the RBFs. For a state vector of a given dimension, 

defined by the number of Gaussian pdfs, we can achieve high resolution for large localized sources 

by sacrificing resolution for weak or uniform source regions where resolution is not needed. This is 

illustrated in Fig. 4.6-1 with the resolution of Southern California in an inversion of methane 

sources for North America. The figure shows the three dominant Gaussians describing emissions in 

Southern California and the corresponding RBF weights for each native-resolution grid square. 

Gaussian 1 is centered over Los Angeles and is highly localized, Gaussian 2 covers the Los Angeles 

Basin, and Gaussian 3 is a Southern California background. The sum of these three Gaussians 

accounts for most of the emissions in Southern California and Nevada (which is mostly 

background). Additional Gaussians (not shown) resolve the southern San Joaquin Valley (large 

livestock and oil/gas emissions) and Las Vegas (large emissions from waste). 
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4.6.3 Estimating methane emissions 
4.6.3.1 Global inversion of methane emissions 

Returning to the problem of estimating methane sources, we begin by using the GOSAT data to 

infer global methane emissions at 4◦×5◦ resolution. We use an adjoint-based four-dimensional 
variational data assimilation system (Henze et al., 2007; Wecht et al., 2012, 2014a) to infer the 

global sources and will use the GMM-based methodology to infer regional sources. 

 

Table 4.6-2: 2009–2011 methane emissions a . 
Source Type Contiguous US North America Global 

 Prior Posterior b  Prior Posterior b  Prior Posterior 

Total   31.4  51.3–52.5    63.3  88.5–91.3   537   539  

Wetlands   5.9  9.0–10.1   20.4  22.9–23.7   164   169  

Livestock   8.9  12.6–17.0   14.5  20.0–25.7   111   116  

Oil/Gas   5.4  8.7–13.4   10.8  15.5–22.3   69   67  

Waste c    5.5  8.0–8.5   9.7  13.4–14.5   60   65  

Coal   4.0  4.7–6.5   4.3  5.0–6.8   47   30  

Rice   0.4  0.8–0.9   0.5  0.9–1.0   38   45  

Open Fires   0.1   0.1   1.0   0.9   17   16  

Other d    1.1  1.6–1.7   2.2  3.0–3.3   31   32  

Natural e    7.5  9.8–11.1   25.0  25.1–26.2   176   181  

Anthropogenic f    25.0  40.2–42.7   41.9  62.3–66.2   361   358  
a Emissions are in Tg a 1− . Prior emissions are mainly from EDGARv4.2 for anthropogenic sources 
and Pickett-Heaps et al. (2011) for wetlands (see Appendix). 
b Range from two inversions with different assumptions for prior error (see text). 
c Including landfills and waste water. 
d Including fuel combustion, termites, and soil absorption. 
e Including wetlands, open fires, termites, and soil absorption. 
f Including livestock, oil/gas, waste, coal, rice, and fuel combustion. 

 

The state vector for the global inversion consists of scaling factors for emissions at 4◦×5◦  
resolution for June 2009–December 2011. The prior emissions are mainly from the EDGARv4.2 

inventory for anthropogenic sources (European Commission, 2011), and Pickett-Heaps et al. (2011) 

for wet- lands. The error covariance matrices are taken to be diagonal, implying no error correlation 

on the 4◦×5◦ grid. We assume 50% error variance on the prior for 4◦×5◦ grid cells as in Monteil et al. 
(2013). 
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Observational error variances are estimated following Heald et al. (2004) by using residual 

standard deviations of the differences between observations and the GEOS-Chem simulation with 

prior emissions. As shown by Heald et al. (2004), this residual error provides an estimate of the 

total observational error needed for the inversion, summing the contributions from instrument 

retrieval, representation, and model transport errors. We find that the resulting observational error 

variances are lower than the local retrieval error variances reported by Parker et al. (2011) for 58% 

of the observations, and in those cases we use the latter instead. The implication is that the Parker et 

al. (2011) error estimates may be too high but provide a conservative estimate of the observational 

error. 

The GEOS-Chem forward model and its adjoint are as described by Wecht et al. (2014a). We 

optimize methane emissions from 1 June 2009 to 1 January 2012. The forward model is initialized 

on 1 January 2009 with concentrations from Wecht et al. (2014a). The 5-month spin-up allows for 

the establishment of gradients driven by synoptic motions and effectively removes the influence of 

the initial conditions. 
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Fig. 4.6-2. Optimization of methane emissions for 2009–2011 at 4◦×5◦ horizontal resolution using 
GOSAT observations. The panels show prior emissions, posterior emissions, and the ratio between 

the two. (from: Turner et al., 2015; their Fig. 3). 

 

Figure 4.6-2 shows the prior and posterior 2009–2011 emissions. The total posterior methane 
emission is 539 Tg a 1− , unchanged from the prior (537 Tg a 1− ). This source is within the 548 21

22
+
−  

Tg a 1−  range of current estimates reported by Kirschke et al. (2013) and IPCC (2013). However, 
we find large regional differences compared to the prior. Emissions from China are revised 

downward by 50% from 29.2 to 14.7 Tg a 1− , consistent with Bergamaschi et al. (2013), who find 
that EDGARv4.2 Chinese coal emissions are too large. This overestimate in Chinese methane 

emissions is also seen by Bruhwiler et al. (2014), who assimilated the 2000–2010 NOAA surface 

observations into CarbonTracker using an ensemble Kalman filter. Emissions in India are also too 

high, while emissions in Southeast Asia are too low. Emissions from wetlands in central Africa are 
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too high. Emissions in northern South America are too low. Corrections in North America are 

discussed in the next section.  

We inferred the contributions from different source types to our posterior emissions by 

assuming that the prior inventory correctly partitions the methane by source type in each 4◦×5◦  
grid cell. This does not assume that the global distribution of source types is correct in the prior, 

only that the local identification of dominant sources is. We find only modest changes to the global 

partitioning by source types, with the exception of coal and rice, partly reflecting regional offsets. 

For example, wetland emissions increase globally by only 5 Tg a 1−  but decrease by 24 Tg a 1−  in 

the African wetlands, while increasing by 10 Tg a 1−  in northern South America. 
 

4.6.3.2 North American inversion of methane emissions 
We then optimize methane emissions over North America by using the nested GEOS-Chem 

simulation at 1/2◦×2/3◦ horizontal resolution (∼50 km × 50 km) over North America. 

Time-dependent boundary conditions for this nested simulation are from the global model at 4◦×5◦ 
horizontal resolution using the posterior emissions derived above. We only solve for the spatial 

distribution of emissions, assuming that the prior temporal distribution is correct. 

 

Fig. 4.6-3. Methane emissions in North America in 2009–2011. The left panels show the prior and 

posterior emissions and the bottom right panel shows the scaling factors. The top right panel shows 

the diagonal elements of the averaging kernel matrix for the methane emission inversion. The 

degrees of freedom for signal (DOFS) is the trace of the averaging kernel matrix. (from: Turner et 

al., 2015; their Fig. 4). 
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As discussed in Section 4.6.2.3, the dimension of the emissions state vector for the nested 

North American inversion is optimally reduced from the native 1/2◦×2/3◦ resolution (n = 7366) in 
order to (1) improve the observational constraints on individual state vector elements and (2) enable 

an analytical inversion with full error characterization. This is done by aggregating similar state 

vector elements with a Gaussian mixture model (Bishop, 2007). We find that an optimal reduction 

with negligibly small aggregation error can be achieved using 369 radial basis functions (RBFs) 

with Gaussian kernels. The RBFs are constructed from estimation of the factors driving error 

correlations between the native-resolution state vector elements including spatial proximity, 

correction from one iteration of an adjoint-based inversion at 1/2◦×2/3◦ resolution, and prior source 
type distributions. Including the correction from the adjoint-based inversion allows us to account 

for sources not included in the prior. Each 1/2◦×2/3◦ native-resolution grid square is projected onto 
an aggregated state vector using the RBFs. This preserves native resolution where needed (in 

particular for large point sources) and aggregates large regions where emissions are uniformly 

small. 

Our optimal estimate of North American emissions was obtained by analytical solution to Eq. 

(5) using the methodology described in Section 4.6.2.1. This analytical approach provides the 

posterior covariance matrix Ŝ  and averaging kernel matrix A  as part of the solution and thus 
fully characterizes the errors and information content of the inversion results. 

The observational error covariance matrix is assumed diagonal with terms specified as the 

larger of the residual error variance and the retrieval error variance, same as for the global inversion. 

The prior error covariance matrix is assumed diagonal because the radial basis functions are 

designed to capture spatial correlations in the emissions. We assume 100% error on emissions at the 

native 1/2◦×2/3◦ resolution. For RBFs encompassing larger spatial regions, we assume that the error 
is reduced following the central limit theorem: 

  ,=
,
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 (18) 

where },{,a iiS  is the i th diagonal of aS , as  is the prior uncertainty at the native resolution 

(100%), and the summation is for the weights of the i th RBF over all 1/2◦×2/3◦ grid squares (index 
j ). This error reduction assumes that the errors on the native-resolution grid cells are independent 

and identically distributed, which may be overly optimistic. We examined the sensitivity to this 

assumption by conducting an alternate inversion with a relative error of 30% for all state vector 

elements, similar to the approach taken by Wecht et al. (2014a) using a hierarchial clustering 

method for the state vector.  

Figure 4.6-3 shows the prior and posterior 2009–2011 emissions. Total posterior emissions in 

North America (Table 4.6-2) are 44% higher than the prior, with large increases in the southern–
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central US and weak decreases for the Canadian wetlands. Contiguous US emissions are 52 Tg a 1− , 
70% higher than the prior. The broad correction patterns are consistent with the coarse global 

results in Fig. 4.6-2 that used a completely different inversion method. Our sensitivity inversion 

assuming 30% prior error on all state vector elements yields the same North American and 

contiguous US totals to within 3%. 

We evaluated the posterior emissions in a GEOS-Chem simulation over North America by 

comparison to the independent observations from the NOAA network. We find great improvement 

in the ability of the model to reproduce these observations, as illustrated by the scatterplots of Fig. 

4.6-4. The reduced-major-axis (RMA) regression slopes improve from 0.72 to 1.03 for the 

NOAA/ESRL tall tower network, from 0.75 to 0.94 for the NOAA/ESRL aircraft profiles, and from 

0.67 to 1.01 for the NOAA surface flasks. 
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Fig. 4.6-4. Evaluation of the GOSAT inversion of methane emissions for North America with 

independent data sets. The scatterplots show comparisons of GEOS-Chem (1/2◦×2/3◦ resolution) 
methane concentrations with observations from the NOAA/ESRL tall tower network (red), 

NOAA/ESRL aircraft program (blue), and the NOAA/ESRL surface flask network (orange), using 

prior emissions (top) and posterior emissions (bottom). The 1 : 1 lines (dashed) and 

reduced-major-axis (RMA, solid) linear regressions are also shown. (from: Turner et al., 2015; their 

Fig. 5). 

 

Another independent evaluation of our posterior emissions is the estimate for California. 

California’s methane emissions have been extensively studied with aircraft and ground-based 

observations over the past few years in order to address statewide greenhouse gas regulation targets 

(Zhao et al., 2009; Wunch et al., 2009; Hsu et al., 2010; Peischl et al., 2012; Wennberg et al., 2012; 
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Jeong et al., 2012, 2013; Peischl et al., 2013; Santoni et al., 2014; Wecht et al., 2014b). Figure 4.6-5 

shows that our posterior emissions are 20% higher than the EDGARv4.2 prior inventory for the 

state of California and 50% lower for the Southern California Air Basin (SoCAB). Other studies 

constrained with dense aircraft and ground-based observations are consistent with ours. Wecht et al. 

(2014b) previously found that GOSAT observations were not sufficiently dense to constrain 

methane emissions in California. However, they only used a 2-month record and tried to constrain 

emissions at 1/2◦×2/3◦ resolution, incurring large smoothing error. By using a longer time record 
and an optimally defined state vector, we achieve much better success. 

 

 

Fig. 4.6-5. Methane emissions for the state of California (top) and for the Southern California Air 

Basin (SoCAB; bottom). Our posterior emissions (this work) are compared to prior emissions 

(EDGARv4.2) and to previous inverse estimates constrained by surface and aircraft observations. 

SoCAB is defined following Wennberg et al. (2012) as the domain 33.5–34.5◦ N, 117–119◦ W. 
(from: Turner et al., 2015; their Fig. 6). 

 

Figure 4.6-3 (top right panel) shows the averaging kernel sensitivities for the North American 

methane emission inversion, defined as the diagonals of the averaging kernel matrix. The inversion 

has 39 degrees of freedom for signal (DOFs), meaning that we can exactly constrain 39 pieces of 

information in the distribution of methane emissions. This information is spread over the continent 

and mixed with prior constraints as described by the averaging kernel matrix. We can use the 

averaging kernel sensitivities in Fig. 4.6-3 to determine which regions are most responsive to the 

inversion. These include California, the Canadian wetlands, and the southeastern and central US. 



Chapter 4  Case Studies 

4.6-17 

Large isolated point sources such as the US Four Corners (a large source of coalbed methane at the 

corner of Arizona, New Mexico, Colorado, and Utah) are also strongly sensitive to the inversion. 

We see from Fig. 4.6-3 that the prior underestimate of North American methane emissions is 

largely due to the central US, the Canadian Oil Sands, central Mexico, California, and Florida. 

Various large point sources such as the US Four Corners also contribute. We also find regions where 

the prior is too high, including the Hudson Bay Lowlands, SoCAB, and parts of Appalachia. This 

suggests that oil/gas and livestock emissions are higher than given in EDGARv4.2, while coal 

emissions are lower. The overestimate in SoCAB is likely because EDGARv4.2 uses urban and 

rural population as a spatial proxy for landfills and waste water (Wunch et al., 2009). The 

underestimate in Florida is most likely due to wetland sources. 

As with the global inversion, we infer the contributions from different methane source types by 

assuming that the prior inventory correctly attributes the source types in a given 1/2◦×2/3◦ grid cell. 
Again, this does not assume that the prior distribution is correct, only that the identification of 

locally dominant sources is correct. Results are shown in Fig. 4.6-6. We see that the increase 

relative to the prior is mainly driven by anthropogenic sources. This can be compared to the US 

EPA anthropogenic inventory (EPA, 2014), which is based on more detailed bottom-up information 

than EDGARv4.2 but is only available as a national total. We find an anthropogenic source for the 

contiguous US of 40.2–42.7 Tg a 1− , as compared to 27.0 Tg a 1−  in the US EPA inventory. The 
largest differences are for the oil/gas and livestock sectors. Depending on the assumptions made 

regarding the prior error, oil/gas emissions from our inversion are 13–74% higher than the EPA 

estimate and contribute 17–26% of contiguous US methane emissions. Livestock emissions are 36–

85% higher than the EPA estimate and contribute 24–33% of contiguous US methane emissions. 

Waste and coal emissions are also higher in our posterior estimate than in the EPA inventory. 
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Fig. 4.6-6. Methane emissions in the contiguous US. The left panel shows our best estimates of total 

and anthropogenic emissions (this work) compared to the prior (EDGARv4.2 for anthropogenic 

sources, Pickett-Heaps et al. (2011) for wetlands) and the previous inverse studies of Wecht et al. 

(2014a) and Miller et al. (2013). The right panel partitions US anthropogenic emissions by source 

types and compares our results (this work) to EDGARv4.2 and to the 2012 EPA inventory (EPA, 

2014). Error bars on sectoral emissions for our results are defined by the sensitivity inversion with 

30% prior uncertainty for all state vector elements. (from: Turner et al., 2015; their Fig. 7). 

 

4.6.4 Conclusions 
The sources and sinks of atmospheric methane have proved difficult to constrain (Turner et al., 

2017). Here we presented results from a case study examining global and regional methane 

emissions sources. 31 months of observations from GOSAT were used to quantify the methane 

sources and were found to be in good agreement with regional estimates obtained from focused 

field campaigns. The observations were used in both an adjoint-based and analytical inversion 

methodology. The analytical inversion used a reduced-dimension state vector with the state vector 

defined by radial basis functions using a Gaussian mixture model. The case study presented here 

demonstrates the potential for further monitoring of methane emissions using satellite observations. 
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4.7.1 Introduction 

An atmospheric inverse modeling, so called a top-down approach, is an effective way to 

estimate global and regional greenhouse gas (GHG) emissions by an atmospheric transport model 

and precise measurements of GHG concentrations. The inverse modeling assumes anthropogenic 

emissions due to fossil fuel consumption and cement production (FFC) are a known quantity, 

because the emissions are calculated from better known industrial indicators, e.g. the gross 

domestic product (GDP), import/mining of energy resources, and energy intensity (energy 

consumed per unit of GDP). Thus, any bias (uncertainty is assumed 0 in inverse models) in the FFC 

emissions would introduce systematic bias in estimation of the terrestrial (residual) fluxes by 

inverse modelling.  

Recent bottom-up studies have pointed out that the maximum uncertainty in FFC CO2 

emissions is clearly found for China (Guan et al. 2012; Liu et al. 2015; Korsbakken et al. 2016). A 

top-down model assessment from seven inverse models found that an annual CO2 sink in East Asia 

(China, Japan, Korea and Mongolia) increased between 1996–2001 and 2008–2012 by 0.56 PgC on 

an average (Thompson et al., 2016). The effort to validate the inverted CO2 fluxes using 

independent aircraft CO2 observations did not provide conclusive results as the modeled 

concentrations fairly matched the observed vertical gradients between the surface and middle 

troposphere as well as the concentrations near the surface layer for a large range (~1 PgC/yr) of 

residual CO2 sinks over East Asia alone. 

On the other hand, we found the inversion results of CH4 emissions could be successfully 

validated using independent aircraft observations over Japan, which suggested an overestimation of 

East Asian CH4 emission increase by bottom-up inventories (Patra et al., 2016; Section 4.8 in this 

issue). Here we introduce a new approach to use the CH4 inversion results to refine the increase rate 

of bottom-up FFC CO2 emissions for East Asia, and show that no systematic increase in land 

CO2 uptake over East Asia may be required (as in Saeki and Patra, 2017). The current study used 

only surface data for GHG concentrations in inversion analysis, but the results have equal 

implications for the use of satellite measurements in an inverse modelling system. 

 

4.7.2 Data 
We use CO2 observations from 66 sites from GLOBALVIEW-CO2 (2013) data products for 
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CO2 inversion analysis to derive CO2 fluxes as described in 4.7.3.2. The GLOBALVIEW dataset 

consists of interpolated and smoothed data created from weekly or biweekly flask measurements at 

each site. The data uncertainties are assigned to monthly-mean CO2 to account for the ability of 

transport models to simulate atmospheric data and the observational accuracy.  
 
4.7.3 Method 
4.7.3.1 Outline 

First, we conduct CO2 inversions with 3-sets of a priori FFC emissions. We then derive a 

scaling factor from CH4 inversion results to correct an increase rate of FFC CO2 emissions. The 

CH4 inversion has been validated by independent atmospheric measurements. Because CO2 and 

CH4 emissions have strong correlations for some of the emission categories, we took liberty to 

apply the CH4-derived scaling factor to refine the a priori FFC CO2 emissions. The CH4-based FFC 

emission corrections to inverted CO2 fluxes are applied a posteriori. 

 

4.7.3.2 CO2 inversion 
CO2 inversions are performed for 2001–2012 to optimize fluxes from 84 regions of the globe 

using the JAMSTEC’s atmospheric chemistry-transport model (ACTM) and CO2 observations from 

66 sites taken from GLOBALVIEW-CO2 (2013) data products (Saeki and Patra, 2017; Thompson 

et al. 2016). We have used three a priori FFC CO2 emission maps from (1) CDIAC: emissions of 

top-20 countries from CDIAC (Boden et al. 2016) distributed using EDGAR4 emission maps 

(Olivier et al. 2014; 2010 emission maps repeated for the latter years), (2) CARBONES: a project 

of the European Union (I. van der Laan-Luijkx, personal communication, 2015; as in Thompson et 

al. 2016), and (3) the IEA (International Energy Agency) emissions for South Asia, East Asia, 

Southeast Asia and rest of the world distributed using CARBONES emission maps (as in Thompson 

et al. 2016; referred to as IEA) (Fig. 4.7-1).  
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Figure 4.7-1. FFC CO2 emission map of the CDIAC inventory in 2011 (a), and the differences 

between CDIAC emissions for 2011 and 2002 (b), GEOCARBON and CDIAC emissions in 2011 

(c), and IEA and CDIAC emissions in 2011 (d). 

 
4.7.3.3 FFC CO2 emission scaling factor from CH4 inversion 

CH4 inversions are performed for 53-land regions only, using ACTM forward simulations and 

atmospheric data from 39 sites (Patra et al. 2016; Section 4.8. in this issue;). The CH4 inversions 

suggested that increase rate of estimated CH4 emissions are 39% (9 Tg) lower than that of a 

EDGAR42FT inventory during 2002-2012 (Fig. 4.7-2a). The EDGAR42FT inventory, used as a 

priori, suggested an increase of 23 Tg-CH4 emissions from East Asia, which is contributed entirely 

by the anthropogenic emission increase rate in China. The validation using independent aircraft 

measurement over Sendai by Tohoku University (Umezawa et al. 2014) showed clearly that forward 

simulations with the a priori fluxes overestimated the observed CH4 increase but that with the 

inverted flux showed good agreement for the net concentration increase during 2002-2012 (see 

Section 4.8. for details). We derive a scaling factor of 0.59 (=1.53/2.61, a ratio of slopes of the 

linear fits for a posteriori and a priori emissions in Fig. 4.7-2a) to correct an increase rate of a priori 

CH4 emissions in East Asia during 2002-2012. The slope of the fitted line to a posteriori CH4 

emissions agrees well with a recent inventory emission estimate by Peng et al. (2016). They find 

smaller number of deep mining fields in China, which have high CH4 emission factors, compared 

that previously assumed.  

 



Chapter 4  Case Studies 

4.7-4 

Figure 4.7-2. (a) Comparisons of CH4 inversion results (black: a priori; blue: a posteriori) for the 

East Asia (EA) region with the EDGAR estimated anthropogenic emissions for China. The linear 

fits to the annual mean values are shown as lines, with slopes being marked along the fitted lines. 

Recent inventory based CH4 emissions are plotted for a comparison (magenta line; source: Peng et 

al., 2016). (b) The linear relationship of anthropogenic CO2 and CH4 emissions for China over the 

period of 1970-2012 is evident in the emission inventories, e.g., EDGAR42FT. The inter-decadal 

values are marked by text and red circles. 

 

4.7.3.4 Refinement of inverted CO2 fluxes by revised FFC CO2 emissions 
Since the anthropogenic emissions of both CO2 and CH4 increase linearly in the emission 

inventory, we apply a scaling factor of 0.59 derived from the validated CH4 inversion results, to 

FFC CO2 emission “increase rate” for the period 2003–2014, relative to the emissions for 2002 

from CDIAC inventory. The application of this CH4-inversion-derived scaling factor to the CO2 
emission increase rate assumes constant CH4/CO2 emission ratio over the periods of our analyses 

and is deemed valid as per the linearity maintained in anthropogenic emission inventories of CO2 
and CH4 over the period of 1970–2012 (EDGAR4; Fig. 4.7-2b). The increase in emissions of both 

CO2 and CH4 in East Asia is linked to the Chinese coal industry (Fig. 4.7-3); CH4 is emitted during 

the coal mining, while emissions of CO2 occur during the consumption of coal primarily in power 

plants and industrial combustions (EDGAR42FT2010). About 75% of FFC CO2 emissions and up 

to 40% of anthropogenic CH4 emissions are caused due to the coal/oil industry (mining and 

burning), which have produced 82% and 72% of the increase in their emissions, respectively, in the 

period 2002–2010 (EDGAR42FT).  

The inverse model land (residual) fluxes are corrected for the FFC CO2 emission bias 

(following Peylin et al. 2013; Thompson et al. 2016). Note that the method is a good approximation 

when biases in assumed FFC CO2 emission only in influence land CO2 flux of the same region, but 
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this is probably not the case because our regional fluxes are poorly constrained by 
observational data (Saeki and Patra 2017). 

 
Figure 4.7-3. Time series of Chinese CO2 and CH4 emissions for the major anthropogenic activity 

sectors as provided by the EDGAR database. The CO2 emission increase rate from power plants 

sector shows very close correspondence with CH4 emission increase due to coal mining and solid 

fuel transformation. The total anthropogenic emissions for CO2 and CH4 are also closely correlated 

in EDGAR (Fig. 4.7-2b). 

 
4.7.4 Case Studies 
4.7.4.1 A case study for East Asian CO2 balance 

We estimated land CO2 fluxes with three different a priori FFC CO2 emissions by the 84-region 

inversion with JAMSTEC’s ACTM. We find the FFC CO2 emissions as per the CDIAC inventory 

method are always higher compared to the CARBONES and IEA inventories. A fairly 

compensatory land CO2 fluxes are estimated for the East Asia region with the interannual variations 

(IAVs) being opposite in phase. A biased higher (lower) FFC CO2 emission will lead to artificially 

stronger (weaker) biospheric CO2 sink over a given land region. Our results suggested only about 

60–67% of the FFC CO2 emission bias is transferred to land uptake increase for the East Asia 

region, implying that the estimated land fluxes by inversion for other parts of the world are not free 

from FFC emission uncertainties in China. 

Figure 4.7-4a shows corrected FFC emission increase rate by applying the CH4 scaling factor 

after 2003 on the CDIAC FFC emissions (=GCP bottom-up), which has about 0.6 Pg/yr lower than 

the original CDIAC estimates. When scaled anthropogenic CO2 emissions are used, we find no 

systematic increase in land CO2 uptake over East Asia during 1993-2010 or 2000-2009, and that 

there is a need of higher emission increase rate for 2010-2012 compared to those calculated by the 

inventory methods (Fig. 4.7-4b). The global mean CO2 exchange simulated by TRENDY2 global 

dynamic vegetation models (DGVMs) are also shown, confirming no significant increase in carbon 
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uptake in East Asia due to CO2 fertilization and climate (S2 simulation). The forest carbon storage 

rates based on the country statistics of Land use and land cover to the U.N. Food and Agriculture 

Organization - Forest Resource Assessment (FAO-FRA2015; country-level inventory estimates) 

also suggest no significant change in carbon sequestration in the East Asia region (symbols with 

bars; different colors are for different data sources; Calle et al., 2016).  

 
Figure 4.7-4. Effect of FFC CO2 emission increase rate on regional carbon budget of East Asia. (a) 

Time series of anthropogenic CO2 emission scenarios for China for 4 scenarios based on a scaling 

factor from CH4 inversion results for East Asia, the economic (GDP) growth, and those estimated 

by GCP (CDIAC) and IEA emission inventories. (b) Effect of FFC CO2 emission increase rate on 

regional carbon budget of East Asia. Decadal mean CO2 fluxes estimated by independent bottom-up 

models (Calle et al., 2016) and TRENDY2 (land biosphere model) are also shown for a comparison. 

 
4.7.4.2 A case study for global CO2 balance 

Further, the land CO2 sink bias due to uncertainties in FFC CO2 emission should influence our 

understanding of the global and regional carbon budgets. Figure 4.7-5 shows sectoral CO2 

sources/sinks budget obtained from the Global Carbon Project (GCP; Le Quéré et al. 2015). The 

corrected anthropogenic CO2 emissions also produce measurable reductions in the rate of global 

land CO2 sink increase post-2002, leading to a better agreement with the terrestrial biospheric 

model simulations by the TRENDY2 project (Sitch et al. 2015). This raises a question on the 

validity of proposed stabilization in FFC CO2 emissions, and consequently a large increase the 

inferred terrestrial uptake during 2003-2012 (e.g., Le Quere et al., 2015). 
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Figure 4.7-5. Time series of CO2 fluxes as estimated by the Global Carbon Project for fossil fuel 

and cement (FFC), land-use change (LUC), atmospheric burden increase (ABI), oceanic exchange 

(OCN), residual land biosphere (LND = FFC + LUC – ABI − OCN), ensemble mean land fluxes 
simulated by the global dynamic vegetation models (DGVMs from TRENDY project) during the 

period 1999–2014 (top). FFC corrected by CH4 inversion scaling (corFFC) are also shown. 

Corrected land fluxes (corLND) is based on residuals calculated using corFFC emissions. Relative 

values to the year 1999 are also shown in the lower panel for better clarity on the improved 

agreement of corLND fluxes with those simulated by the state-of-the-art DGVMs (bottom). 
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4.8.1 Introduction 

Methane (CH4) is an important greenhouse gas, second only to carbon dioxide (CO2) for the net 

increase in radiative forcing of the Earth’s atmosphere since the preindustrial time (circa. 1750). 

The radiative forcing due to naturally occurring water vapour has not changed apparently in the era 

of direct measurement [IPCC, 2013]. Methane also participate strongly in the chemistry of 

tropospheric air pollution and in modulating stratospheric water vapour budget. Sources and sinks 

budgeting of CH4 is thus seen as more challenging compare to CO2, because the latter has the 

sources and sinks located on the Earth’s surface and no chemical production/loss is considered in 

modelling atmospheric-CO2 [Heimann and Keeling, 1989], while about 90% of CH4 is lost by 

reacting with hydroxyl radical (OH) in troposphere. The third most important GHG, nitrous oxide 

(N2O) is emitted from the Earth’s surface and has no known loss processes within the troposphere 

[Ishijima et al., 2010]; thus no direct link between the photo-chemical loss of N2O and surface 

emissions. In contrast to CO2 and N2O, for deriving atmospheric observational constraint on 

emission of CH4 on the Earth’s surface requires full knowledge of its chemical loss in the 

troposphere. Thus, the distribution and trends in OH should be independently verified for 

quantification of chemical sink of CH4, particularly in the troposphere, before performing inverse 

modelling of atmospheric-CH4 for estimating surface emissions [Patra et al., 2014]. 

Inverse modeling, the so called a top-down approach, is commonly employed for estimation of 

global and regional greenhouse gases (GHGs) emission by using an atmospheric 

chemistry-transport model (CTM) and measurements of GHG concentrations. The accuracy of CH4 

sources and sinks modelling depends on the uncertainties in representation of model transport, OH 

concentration and size of observational network. For a very long time, small number of in situ 

measurements from about 100 sites were the source of atmospheric data for inverse modelling of 

CH4 emissions (Patra et al., 2016 and references therein). Only recently, dedicated satellites sensors 

are launched for GHGs measurements, e.g., the Greenhouse gases Observation SATellite (GOSAT) 
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by JAXA (Kuze et al., 2009). However, the both downward-looking satellites or upward-looking 

Fourier-Transform Spectrometers (FTS) measure the total columnar in the atmosphere, which 

significantly weakens the link between the variabilities in atmospheric measurements and surface 

emissions, compared to the is situ measurements. Thus, a much greater dependence on CTM 

simulation is envisaged for inferring surface sources from total column measurement.     

 

4.8.2 Data and Method 
4.8.2.1 Atmospheric chemistry-transport model (ACTM) 

Methane in atmosphere is simulated using the Center for Climate System Research/National 

Institute for Environmental Studies/Frontier Research Center for Global Change 

(CCSR/NIES/FRCGC) atmospheric general circulation model (AGCM)-based CTM (i.e., 

JAMSTEC’s ACTM; Patra et al., 2009). The following continuity equation is solved for time (t) 

evolution of CH4 at different latitude (y), longitude (x) and altitude (z) in the earth’s atmosphere.   

      (Eq. 1) 

where, CH4 is methane mole fraction in the atmosphere, S is emissions/sinks of CH4 at the surface, 

taken from bottom-up emission inventories and terrestrial ecosystem model simulations, L is 

temperature (T) dependent loss rates of CH4 due to reaction with OH, O(1D) and Cl, and the last 

term: defines transport of CH4 by advection, convection and diffusion. The loss and transport terms 

in Equation 1 should be critically evaluated before optimizing bottom-up emissions of CH4. Details 

of the ACTM setup are given in Patra et al. (2016).  

 

4.8.2.2 CH4 observations 
We use atmospheric CH4 measurements in units of dry-air mole fraction (in ppb, parts per 

billion) from 37 NOAA/ESRL cooperative global air sampling network sites and 2 Japan 

Meteorological Agency sites for estimating monthly-mean emissions by inversion (Fig. 4.8-1). Both 

measurement networks reported data on the WMO mole fraction scale (Dlugokencky et al., 2005). 

These remote background measurement sites are chosen based on minimal data gap, typically less 

than 2 months, for the period of inverse calculation, 2001–2013. 

  
Fig. 4.8-1. Map of 53 land region divisions used 

in CH4 inverse modelling by ACTM (Patra et al., 

2016). Locations of 39 measurement sites are 

marked by numbers. Observational data are 

available from the WMO World Data Center for 

Greenhouse Gases (WDCGG).  
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For independent validation of the estimated CH4 emissions by inverse modelling, we use the 

long-term aircraft profile measurements over Sendai (38.3oN, 140.9oE) by Tohoku University 

(Umezawa et al., 2014). These measurements are located strategically in the region of maximum 

emission increase due to anthropogenic activities as suggested by the inventory emissions.  

We use the RemoTeC’s CH4 Full Physics GOSAT product, jointly developed at SRON 

Netherlands Institute for Space Research and the Karlsruhe Institute for Technology (KIT). The 

algorithm retrieves simultaneously CH4 and CO2, as well as three aerosol parameters representing 

their amount, height distribution and size distribution from four spectral regions: the 0.77 μm 

oxygen band, two CO2 bands at 1.61 and 2.06 μm, as well as a CH4 band at 1.64 μm. The XCO2 and 

XCH4 products have been extensively validated with ground-based measurements (Butz et al., 

2011). 

 

4.8.2.2 CH4 inversion 
The imbalance between a priori emissions and loss rates produces significant (much greater 

than observational data uncertainty) mismatches between the observed and simulated growth in 

CH4 in the Earth’s atmosphere (Fig. 4.8-2). Thus, inverse model calculations are often performed to 

correct for deficiencies in bottom-up emission estimates. In the Bayesian method, we estimated 

emissions (S) and their uncertainties (CS) using the following equations: 

(Eq. 2 and Eq. 3) 
where, S0 is regional prior sources, CS0 = Prior source covariance (square of uncertainty), set at 70% 

of region-total emission for each month (S0), D is atmospheric observations, CD is data covariance 

and is set to variable depending on the site behaviour, DACTM is ACTM simulation using a priori 

emissions (S0), and G is Green’s functions, defining the regional source-receptor relationships. The 

sources are calculated for 53 basis land regions as 

depicted in Fig. 4.8-1. The CH4 emissions from the 

ocean regions are not optimized due to its small 

contribution (~10 Tg yr-1) to the global total emission. 

 
Fig. 4.8-2. Time series of CH4 mole fractions as 

observed at selected two of the 39 measurement sites 

used in the emission inversion. ACTM simulated 

values are also shown for a priori and a posteriori CH4 

emissions from inverse model. 
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4.8.3 Results and discussions 
4.8.3.1 CH4 inversion results and validation using independent aircraft data 

We combined emissions from natural and anthropogenic activities, and subtracted the surface 

sinks due to bacterial consumption in the soil to prepare an ensemble of 7 cases of a priori 

emissions (Fig. 4.8-3a,b; grey lines). The a priori emission case (CH4e42) with highest emission 

and rapid increase rate corresponds to anthropogenic emissions from EDGAR42FT (2013) and the 

most of the increase can be attributed to the East Asia region (mainly China). Different assumptions 

of sectorial anthropogenic and natural emissions are made while preparing the total CH4 emissions 

for the 7 a priori cases (details in Patra et al., 2016). Figure 4.8-3a (coloured lines) shows that 6 of 

the 7 inversion ensembles agreed very well for the global totals and interannual variations (r2=0.81 

for CH4ags and CH4e42, r2>0.97 between CH4ags and 6 others). The inversions show significant 

increases in the global CH4 flux starting in 2007 by greater than 20 Tg yr-1 compared to ~12 Tg yr-1 

of 1-σ standard deviation for IAV. The CH4ctl case generated interannual variation that does not 

exist in the prior (grey straight line). Although the CH4e42 case followed very similar emission 

trajectories as the 6 other cases, it remained separated for the both global and East Asian total 

emissions. 

 
Fig. 4.8-3. Time evolution of total CH4 emissions of all source types for global and East Asia (a,b). 

The a priori emissions of 7 ensemble members are shown as the grey lines, and those following the 

inversion are shown in coloured lines. The ACTM simulations corresponding to the a priori and a 

posteriori emissions are depicted in panels c and d, relative to the observed CH4 concentrations over 

Sendai in the lower troposphere. All coloured line legends are common to those given in panel d. 
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For validating the CH4 emission increase rate, we show model – measurement differences of 

CH4 over Sendai, Japan in Fig. 4.8-3c,d. The simulated mole fractions calculated with a posteriori 

emissions agree with the measured values within 0.3% (5 ppb) for individual years, except for 

CH4e42 case. The vertical gradients are also well simulated for 2002–2012 (not shown) with typical 

model-observation differences lower than 20 ppb. These comparisons clearly indicate that the 

CH4e42 inversion case still overestimates emissions of CH4 from the East Asia region. Our best 

estimated emission increase is 7–8 Tg yr-1 over the periods of 2002–2006 and 2008–2012, by 

excluding the CH4e42 case. It should be pointed out here that a posteriori uncertainty (CS) was 

about 22 Tg yr-1 for the East Asia region, which does not truly reflect the quality of mean a 

posteriori flux by the 6 inversion ensembles. The quality of the mean fluxes is better evaluated 

(within 10 Tg yr-1) using independent aircraft measurements. The net increase in CH4 emissions by 

inversion for East Asia has large implications for CO2 inversions (Saeki and Patra, 2017).  

 

4.8.3.2 Linking inter-hemispheric CH4 balance with north-south hemispheric OH gradient 
As mentioned earlier, most of CH4 in atmosphere are lost due to reaction with OH. Because of 

its very short lifetime (~1 sec) and very low abundance (~106 molecules cm-3) in the troposphere, an 

accurate characterization of OH distributions and strength has remained elusive. Use of methyl 

chloroform (CH3CCl3) is found to be ideal for characterizing OH, because emission of this 

man-made species is regulated stringently by the Montreal Protocol in 1988 due its strong ozone 

depletion potential, and the local lifetimes of CH3CCl3 is 1–3 years in the tropical troposphere, 

which is of similar magnitude as the interhemispheric transport time of ~1.3 years. The latter 

condition is important for evaluating northern-to-southern (NH/SH) ratio of hemispheric mean OH. 

Using the time evolution of CH3CCl3 simulation, the balance between global total emissions and 

global mean OH concentrations can be established (Fig. 4.8-4a). We use pre-defined tropospheric 

OH concentrations from Spivakovsky et al. (2000) (referred to as ACTM_0.99 as the NH/SH OH 

ratio is 0.99) and Sudo et al. (2002) (referred to as ACTM_1.26 as the NH/SH OH ratio is 1.26). 

From the observed differences in CH3CCl3 between MHD and CGO from two ACTM simulations 

(Fig. 4.8-4b), equal amount OH in both the hemispheres is suggested (Patra et al., 2014).  

One of the important implications of correctly estimating the NH/SH OH ratio is for the 

budgets of many important short-lived species that affect the Earth’s radiative budget and air 

pollution chemistry. Impact of using ACTM_0.99 and ACTM_1.26 OH fields on CH4 emission 

estimation is studied using our newly developed inverse modeling system [Patra et al., 2016]. The 

inverse estimated CH4 emissions are clearly biased high in the NH mid-high latitude regions and 

generally biased low (compensatory for global totals) in the tropical and SH land regions when 

ACTM_1.26 is used in forward modelling of CH4, compared to the use of more accurate 

representation of OH in ACTM_0.99 (Fig. 4.8-5). The NH total CH4 emission estimated to be 18 Tg 
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yr-1 higher for ACTM_1.26 (and 15 Tg yr-1 lower in the SH), compared that for ACTM_0.99. 

 

 
Fig. 4.8-4. Time series of CH3CCl3 concentrations (a) and inter-sites gradients (b) as observed by 

AGAGE network (Prinn et al., 2000) at Mace Head (MHD) and Cape Grim (CGO) and simulated 

by ACTM_0.99 and ACTM_1.26 simulations. 

 
Fig. 4.8-5. Differences in inversion 

estimated CH4 emissions due to the use of 

two different OH distributions in ACTM 

simulations. The 12 regions identified as 

the x-tick labels are obtained by 

aggregating 53 regions of the inverse 

model as depicted in Fig. 4.8-1.  

 

 

 

4.8.4 Outlook for GOSAT CH4 utility 
One of the major limitations for inverse modelling of GHG sources/sinks is the lack of 

sufficient in situ measurement stations, say covering each of the 53-regions of the inverse model 

(Fig. 4.8-1). However, this limitation should be relaxed provided high density and high-quality 

measurements of CH4 are made from space. Although progress is being made in understanding the 

information content in GOSAT XCH4 retrievals over the Asian regions (Ishizawa et al., 2016; 

Chandra et al., 2017), various retrieval biases and uncertainties in forward model simulations still 

keep the GOSAT data usage at minimal for CH4 inverse modelling (e.g., Pandey et al., 2016).  

An overall agreement is found between the maps of CH4 emissions and GOSAT XCH4 

distributions for the high emissions and CH4 over the Indo-Gangetic Plain (IGP) and most parts of 

eastern China (Figure 4.8-6a,b,d). The east-west gradients in CH4 over IGP by model simulations 

show different feature when simulated by ACTM_0.99, where simulation using CH4ags emission 

case show much higher XCH4 over Bangladesh compared to the ACTM simulation using CH4ctl 
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case and the retrievals by SRON/KIT. The XCH4 seasonality using CH4ags emission also peaks 

earlier compared to the observations due to early peak in emissions (Figure 4.8-6c,g,h). This 

suggests the GOSAT XCH4 values contains information for constraining regional CH4 emission 

over the South Asia region. It may be noted here that the data density over the South Asia region is 

sparse during the summer monsoon season (June-Sept.) due to dense cloud cover. Further analysis 

is needed for understanding the causes for large differences found between the GOSAT XCH4 and 

both the ACTM simulations over the northern Southeast Asia and southern China. These regions are 

largely unconstrained by the in situ measurement sites used the inversion.  

 

Fig. 4.8-6. Maps of CH4 emissions (a,b) and total column XCH4 concentrations (d,e,f) are 

compared. Time series of CH4 fluxes and XCH4 time series are shown for seasonal cycle 

comparisons (c,g,h). The simulations are conducted by ACTM_0.99 version of the model. 
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4.9.1 Introduction 
Although the Orbiting Carbon Observatory 2 (OCO-2) was not designed for quantifying 

emissions at the scale of an individual power plant, its limited potential to do so was foreseen in 

“Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements” 

[Pacala et al., 2010]. In selected clear-sky cases, where direct OCO-2 overpasses or close flybys of 

individual mid- and large-sized coal power plants occur, OCO-2’s narrow swath can image a 

segment of the CO2 emission plume, enabling quantification of the emissions with a method 

adapted from studies for CarbonSat [Bovensmann et al., 2010]. This is first demonstrated by 

quantifying daily CO2 emissions from US power plants by fitting the observed XCO2 enhancements 

from OCO-2 to enhancements simulated by a Gaussian plume model, along with a system for 

estimating uncertainties. These daily emission estimates and uncertainties are compared with 

publicly-available CO2 emission data from the US Environmental Protection Agency (EPA). Next, 

the approach is used to derive emissions from a large coal power plant in India that has less detailed 

publicly available emission data and higher uncertainties. Although more complex modeling or data 

analysis could improve emission estimates, Nassar et al. [2017] demonstrates for the first time, the 

ability to quantify emissions from individual power plants with CO2 satellite data. The potential of 

some upcoming and proposed CO2 satellites to provide improved capabilities is also discussed. 

Overall, the Nassar et al. [2017] results affirm that a future constellation of CO2 imaging satellites, 

optimized for point sources, could contribute to the monitoring, reporting and verification (MRV) of 

CO2 emissions from individual power plants to support the transparency framework of climate 

agreements and the implementation of emission reduction policies. 

  
4.9.2 Data 
4.9.2.1 GHG Concentration Data and Other Data 

A list of coordinates for mid- to large-sized coal power plants (emitting > 10 MtCO2/yr) is 

generated from EPA data (https://ghgdata.epa.gov/ghgp/main.do#/listFacility/) for the US and from 

the Carbon Monitoring for Action (CARMA) (www.carma.org) [Wheeler & Ummel, 2008; Ummel, 

2012] and the Global Energy Observatory (GEO) databases (www.globalenergyobservatory.org) 
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elsewhere. CARMA has global power plant CO2 emission data for 2004, 2009 and ‘Future’, but its 

power plant locations can be unreliable, while the GEO database has more accurate location 

information (verified by inspection of sites in Google Earth) but little to no CO2 emission data. We 

search OCO-2 L2 version 7r XCO2 standard files from Sep 2014 – Dec 2016 inclusive for 

overpasses near sites of interest from the databases identified above. Aqua MODIS imagery of 

clouds, smoke, and surface properties can be viewed together with OCO-2 data since the Aqua 

satellite follows OCO-2 by 6 minutes in the A-Train. For each date and time of an OCO-2 overpass 

of a power plant found, ERA-Interim (~0.75°, 60 vertical levels) [Dee et al., 2011] and MERRA2 

(0.5°x0.625°, 72 levels) [Molod et al., 2015] meteorological reanalysis files are acquired. 

 

4.9.3 Method 
4.9.3.1 Meteorology and Data Visualization 

CO2 transport from a power plant depends on the horizontal wind speed at the plume height. A 

power plant can have multiple stacks, so we calculate the emission-weighted mean stack height 

from available information or assume 250 m. We read the u and v winds for the levels above and 

below the mean stack height from the two meteorological data sets and vertically linearly 

interpolate to the mean stack height. ERA-Interim winds are reported as instantaneous values at 

6-hour intervals, so we also linearly interpolate between the two nearest temporal points. For 

MERRA2, which is provided as 3-hour average winds, we use the closest time directly. The 

interpolated u and v wind vectors are converted to a scalar wind speed and direction/bearing 

(0-360°) with 0° defined as due North. KML files are generated to visualize the 

parallelogram-shaped OCO-2 soundings in Google Earth with a customized XCO2 color scale and 

wind vector arrows centered on each source. The XCO2 value mapped with the KML file and used 

in the emission estimate is a bias corrected value, but uncorrected XCO2 and two variations on the 

bias correction are also included in the file. We view the KML files to look for overpasses or flybys 

with an enhancement in the approximate wind direction. We reject overpasses where the wind 

blows away from the swath, those in regions with complex terrain, or where the swath is broken up 

due to cloud or aerosol, since neighbouring observations could be biased, but if nadir observations 

are lost over a small body of water, we retain confidence in the remaining observations. KML files 

for these case studies are available at ftp://ccrp.tor.ec.gc.ca/pub/RNassar/GRL_Power_Plants/. 

 

4.9.3.2 Plume Model and Fitting 
For each good overpass or flyby, we take the magnitude of the vector mean of the ERA-Interim 

and MERRA2 winds as the wind speed to model the plume. The plume model equations used are 

slightly modified from those in Bovensmann et al. [2010]: 
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      [Eq. 1 and 2] 

where V is the CO2 vertical column in (g/m2) at and downwind of the point source. The x-direction 

is parallel to the wind direction and the y-direction perpendicular to the wind direction. V depends 

on the emission rate F (in g/s), the across wind distance y (in m), wind speed u (in m/s), and the 

standard deviation in the y-direction, σy (in m). Here x is specified in m and xo=1000 m is a 
characteristic length so that the argument of the exponent is dimensionless. a is the atmospheric 

stability parameter, which we determine by classifying a source environment by the 

Pasquill-Gifford stability, which depends on the surface wind speed, cloud cover and time of day 

[Pasquill, 1961]. The surface wind speed and cloud cover are taken from ERA-Interim. 

We select a region of the OCO-2 swath (preferably upwind and thus not affected by the source) 

as the background and average the XCO2 from these points. The model plume is then defined as the 

area from the x-axis (wind vector) down to a threshold of 1% intensity in the positive/negative 

y-directions. We then define the observed plume based on the points that correspond to the model 

plume, accounting for the light path. We determine where the incoming and reflected solar radiation 

would intersect the plume, assuming a 2-dimensional plume at the mean stack height and ignoring 

plume rise. Once the observed plume is defined as the points geometrically corresponding to a 1% 

cut-off of the model plume, the background XCO2 average in ppm is subtracted from it to get the 

observed XCO2 enhancement in ppm. To convert the model enhancements from g/m2 to ppm, we 

use the mean conversion factor k, which we calculate from the background values in g/m2 and ppm 

given in the data files, where k = VCO2 / XCO2. This is reliable only if there are no large or abrupt 

changes in topography for the background. If the wind is nearly parallel to the swath, we truncate 

the plume at some distance from the source to avoid very small relative enhancements and plume 

modeling over long space/time scales. 

With the observed and model plume defined as XCO2 enhancements in ppm, we then calculate 

the model versus observation correlation coefficient (R). This process is repeated testing 

adjustments to the wind direction to maximize the correlation. We accept a rotation to the wind if it 

improves R, passes visual inspection and is consistent with the level of disagreement between the 

ERA-Interim and MERRA2 winds. Fitting for the wind direction reduces the impact of errors in the 

wind direction from the meteorological fields. Using the optimized wind direction, we determine 

the a posteriori emissions by carrying out a weighted linear least squares fit between the model and 

observed enhancements calculated per unit emissions. The weights in the least squares fit are the 

reciprocal of the XCO2 uncertainty values from the OCO-2 full files. We estimate emissions as 

ktCO2/day (1 kt = 106 kg). 
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4.9.3.2 Emission Uncertainties 
Bovensmann et al. [2010] state that since the emission estimate is linearly-dependent on wind 

speed, an error in the wind speed contributes linearly to an error in the emission estimate (i.e. a 10% 

error in the wind speed contributes a 10% error to the emission estimate). In actuality, the error 

dependence is slightly more than linear because the wind speed indirectly affects σy via a. We 

calculate the wind uncertainty contribution (εw) to the emission estimate as the percent difference of 
the two different wind fields from the mean and convert this to an emission rate uncertainty in 

ktCO2/day. The background CO2 concentration is a source of uncertainty in this work and in any 

work where an enhancement is defined with respect to the background, whether determining the 

emissions from a power plant, megacity or volcano. We define the background in 4 different yet 

plausible ways, calculating the spread in emission estimates from this small ensemble to get a 

standard deviation (εb) in ktCO2/day. If the ensemble gives a large spread, then εb is large and 

results in a large overall uncertainty for the emission estimate. If εb is too large, a good background 
cannot be established and we reject the overpass for quantifying emissions. 

The emission uncertainty due to uncertainties in the OCO-2 observations (εe) is also considered 
using an ensemble. The enhancement relative to the background is calculated multiple times with an 

ensemble of 4 bias correction approaches, as described in the supporting information. Our ensemble 

approach effectively quantifies the sensitivity of the multi-step emission estimate to biases of the 

sizes and patterns that could result by applying the different bias corrections, which provides a good 

estimate of the potential uncertainty in the emission estimate arising from the OCO-2 data. Another 

source of uncertainty is that due to secondary sources (εs), but as it is only non-zero for one 
example, it is explained later. The total error is then determined from the wind, background, 

enhancement and secondary source terms: 𝜀𝜀 = �𝜀𝜀𝑤𝑤2 + 𝜀𝜀𝑏𝑏2 + 𝜀𝜀𝑒𝑒2 + 𝜀𝜀𝑠𝑠2  [Eq. 3]. Uncertainty 
related to neglecting plume rise due to thermal lifting in determining the altitude selected for the 

wind speed is difficult to quantify and has not been included above, but is discussed in Nassar et al. 

[2017] supporting information. 

 
4.9.4 Case Studies 
4.9.4.1 A Direct Overpass of a Power Plant in the U.S. 

For a direct OCO-2 nadir overpass with the wind nearly aligned with the orbit track, both the 

base and center of the plume are imaged, and the background is the portion of the swath upwind 

from the source. This alignment is very rare for OCO-2 due to its narrow swath. One occurrence 

was a flyover on 2015-12-04 of the Westar Jeffrey Energy Center (Fig. 4.9.1), a mid-sized 

sub-bituminous coal-fired power plant in Kansas with three 175-m tall stacks and annual 2015 

emissions of 12.5 MtCO2. The observed enhancement is small (~1 ppm) since the emissions were 

dispersed quickly by strong winds (~11 m/s). The EPA provides hourly to annual CO2 emissions for 
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individual facilities (https://ampd.epa.gov/ampd/) and on this date, reported 26.7 ktCO2/day. A 

model fit to the observations gave a daily estimate of 31.2±3.7 kt, with uncertainty contributions 

due to wind speed (0.85 kt), the background definition (1.8 kt) and the enhancement (3.1 kt). 

 

Figure 4.9-1. Direct OCO-2 overpass in the U.S. (a) XCO2 from OCO-2 near the Westar Jeffrey 

Energy Center shown in Google Earth with ERA-Interim (red) and MERRA2 (blue) wind vectors. 

(b) Plume points (red), background points (blue), and the background mean (green line). (c) 

Observed XCO2 relative to the background. (R is the correlation coefficient and a is the 

atmospheric stability parameter). (d) Gaussian plume model XCO2 plume relative to the 

background. (e) Gaussian plume model XCO2 relative to the background as would be viewed by 

OCO-2. Solid lines in panels c–e show the model 1% plume density cutoff from the axial value. 

 

4.9.4.2 A Close Flyby of a Power Plant in the U.S. 

 
Figure 4.9-2. Same as Figure 1 for a flyby of the Ghent Generating Station. The dotted lines in 

panels c–e show an offset for defining the background with respect to the plume edges. 
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In a close flyby, OCO-2’s swath does not pass directly over the source. An example is a flyby 

~8 km from the Ghent Generating Station (Fig. 4.9.2), a coal-fired generating station in Kentucky 

that emitted 11.0 MtCO2 in 2015. OCO-2 observes a strong enhancement on 2015-08-13 since the 

wind speed is very low, yet uncertain (0.50 m/s ERA-Interim, 1.54 m/s MERRA2). Reported CO2 

emissions on this date were 29.2 kt and we estimate 29.5±15.6 kt. Uncertainties in wind speed 

contribute the majority (15.0 kt) of the large emission uncertainty in this result. 

 

4.9.4.3 Application of the Method to a Large Power Plant in India 
Our best example of quantifying emissions from a power plant using OCO-2 comes from a 

flyover of the Singrauli region of India (Fig. 4.9.3) with multiple large coal plants in close 

proximity. Our initial aim was to quantify emissions from the Vindhyachal and Singrauli power 

plants, which emitted 32.4 and 14.8 MtCO2/yr respectively (CARMA future values). However, due 

to the spatial gradients and the strength of the XCO2 enhancement (~10 ppm) in a 2014-10-23 flyby 

of these power plants, we found another major source directly below the enhancement using Google 

Earth. The new source detected was the Sasan Ultra Mega Power Plant (UMPP), which was 

commissioned between 2013 and 2015. Sasan only appears in CARMA as a future emitter with an 

estimate of 33.7 MtCO2/yr, but this estimate assumes a very high emission intensity (1.26 

tCO2/MWh).  

 

Figure 4.9-3. Same as Figure 1 for a direct overpass of a large power plant in India with multiple 

other power plants nearby. Model simulations here include the primary source (Sasan) plume and 

two secondary source (Vindhyachal and Singrauli) plumes superimposed. 

 

Sasan’s Clean Development Mechanism (CDM) application to the UNFCCC (Greenhouse Gas 

Reductions Through Super-Critical Technology - Sasan Power Ltd. Clean Development Mechanism 



Chapter 4  Case Studies 

4.9-7 

Project Design Document Form (CDM-PDD), version 3, 2006-07-28) states that at full capacity it 

was expected to emit 26.38 MtCO2/yr. It has since received credits for certified emission reductions 

since its supercritical coal technology is claimed to emit ~9% less CO2 than standard coal 

combustion. Vindhyachal and Singrauli are 14 and 16 km northeast and upwind of Sasan 

respectively, so we account for their emissions in the OCO-2 swath (Fig 4.9.3d, e), but two other 

large coal power plants, Rihand (20.3 MtCO2/yr) and Anpara (16.8 MtCO2/yr), are farther away and 

due to the wind direction, we consider their impact to be negligible. Only 5 of 6 units at Sasan were 

commissioned at the time of the flyover, so we assume 5/6 of the total output or a mean daily 

emission rate of 60.2 kt. The OCO-2 data yield an estimate of 67.9±10.0 kt with uncertainty 

contributions from wind (5.2 kt), the background (0.59 kt), the enhancement (3.2 kt) and an 

additional error term for the presence of secondary sources (5.6 kt), determined by perturbing the 

CARMA values by ±20%, which gave a perturbation to the estimated emissions of ±5.6 ktCO2/day 

(εs in equation 3). We also tested the sensitivity of the result to the along-wind length of plume used 
ranging from 20-50 km, but it had a smaller impact than any of the error terms included. With this 

large XCO2 enhancement, a well-defined background and good consistency in winds, our 

uncertainty is 14.7% of the estimated emission value, but would be only 9.1% if not for the 

secondary sources. 

 

4.9.4.4 Discussion and Conclusions from Case Studies 
Gaussian plume models are attractive for their simplicity, but like all models, have limitations, 

so we applied the model only to flat regions and to moderate distances and times (up to ~50 km, ~3 

h) since our implementation assumes constant emissions and wind speed and direction, assumptions 

that degrade over longer distances and times. Table 1 in Nassar et al. [2017] shows emission 

estimates for 3 US power plants, 1 in India and 1 in South Africa, including the case studies above. 

US emission estimates are within 1%, 4% and 17% of the EPA daily values. Internationally, only 

annual values (from another year) are available, so we calculated mean daily values. Typically, 

uncertainties related to wind speed were the largest contributor to total uncertainty, which could 

potentially be reduced with higher space-time resolution wind fields. The background CO2 

concentration was another source of uncertainty, which we dealt with by avoiding overpasses with 

ambiguous backgrounds or using an ensemble of background definitions. OCO-2 bias and precision 

both contribute to the enhancement uncertainty term, which was usually lower than the uncertainty 

due to wind. The low uncertainty contribution from the observations means that the accuracy and 

precision of OCO-2 are adequate for quantifying emissions from large and mid-sized coal power 

plants and its real limitation is coverage. OCO-2 is a global sampling mission with a narrow swath, 

not a mapping mission, so there are wide gaps between successive orbit tracks. Since so much of 

the Earth is covered by clouds at any given moment and XCO2 retrievals are very sensitive to cloud 
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contamination, ~90% of XCO2 observations from OCO-2 and other CO2 missions are rejected, with 

some variation based on observing geometry, field-of-view size and cloud detection methods. As a 

result, in ~2 years of OCO-2 data there is rarely more than 1-2 overpasses that are sufficiently 

uninterrupted by cloud and have an appropriate wind direction for any given power plant. 

To quantify CO2 emissions from individual power plants from space, precise CO2 imaging with 

good spatial resolution and coverage is essential. China’s TanSat adds to the coverage currently 

obtained from OCO-2 and the upcoming OCO-3 will have an emphasis on targeting cities and power 

plants, but these LEO imaging missions will still only enable point source quantification in select 

cases. Wider-swath LEO missions would be a benefit; however, estimating annual emissions, 

arguably the most policy-relevant time scale for MRV, requires multiple clear-sky revisits in a given 

year, which is likely not possible to obtain from a single LEO mission. The number of revisits 

required (considering seasonal and diurnal variations) must be established in future work, but with 

enough overpasses, annual emission estimates should have lower relative uncertainties than 

single-overpass daily values. The Sentinel-7 candidate constellation of 3-4 CO2 monitoring LEO 

satellites could potentially provide the required sampling frequency. Imaging from geostationary 

orbit (GEO) like NASA’s future GeoCarb mission or other GEO concepts is another approach that 

would offer diurnal sampling over land with the flexibility for very frequent observations by targeting 

priority locations or cloud-free areas. GEO satellites positioned to observe the Americas, 

Europe/Africa and East Asia could provide a system for monitoring low to mid latitude sources, 

while highly elliptical orbit (HEO) satellites [Nassar et al., 2014] could view higher latitudes.  

Nassar et al. [2017] presents the first detection and quantification of CO2 emissions from 

individual facilities using space-based observations, and has yielded daily emission estimates for coal 

power plants with reasonable accuracy and precision. The results were obtained with observations 

from OCO-2, a mission not designed for this purpose, and suggest that a constellation of multiple 

CO2 imaging satellites optimized for point sources could provide data for regular policy-relevant CO2 

emission quantification for mid- and large-sized fossil fuel burning power plants across the world. 
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APPENDIX-2 ACRONYMS AND ABBREVIATIONS 
 

ACOS Atmospheric CO2 Observations from Space 

ACTM Atmosphere Chemistry-Transport Model 

AGCM Atmospheric General Circulation Model 

CAI Cloud and Aerosol Imager 

CAMS Copernicus Atmosphere Monitoring Service 

CARBONES CARBON Environmental Service 

CARMA Carbon Monitoring for Action 

CCI Climate Change Initiative 

CCSR Center for Climate System Research 

CDIAC Carbon Dioxide Information Analysis Center 

COP Conference of the Parties  

CTM Chemistry-Transport Model 

DGVM Dynamic Global Vegetation Model 

ECMWF European Centre for Medium-range Weather Forecasts 

EDGAR Emission Database for Global Atmospheric Research 

ENVISAT ENVIronmental SATellite 

EPA Environmental Protection Agency 

ESA European Space Agency 

ESRL Earth System Research Laboratory 

ESS-DIVE Environmental System Science Data Infrastructure for a Virtual Ecosystem 

FAO Food and Agriculture Organization 

FFC Fossil Fuel consumption and Cement production 

FLEXPART FLEXible PARTicle dispersion model 

FRA Forest Resource Assessment 

FRCGC Frontier Research Center for Global Change 

FTS Fourier Transform Spectrometer 

GCP Global Carbon Project 

GDAS GOSAT Data Archive Service 

GDP Gross Domestic Product 

GEO Geostationary Orbit 

GEOS Goddard Earth Observing System 

GFAS Global Fire Assimilation System 

GHG GreenHouse Gas 

GMM Gaussian Mixture Model 
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GOSAT Greenhouse gases Observing SATellite 

IAV InterAnnual Variation 

IEA International Energy Agency 

IFOV Instantaneous Field of View 

IPCC Intergovernmental Panel on Climate Change 

JAMSTEC Japan Agency for Marine-Earth Science and Technology 

JAXA Japan Aerospace Exploration Agency 

JCDAS JMA Climate Dara Assimilation System 

JMA Japan Meteorological Agency 

KIT Karlsruhe Institute for Technology 

LEO Low Earth Orbit 

LSCE Laboratoire des Sciences du Climat et de l'Environnement 

LWIR Long-Wavelength InfraRed 

MERLIN Methane Remote Sensing Lidar Mission 

MERRA Modern-Era Retrospective analysis for Research and Applications 

MODIS MODerate resolution Imaging Spectroradiometer 

MOE Ministry of the Environment 

MPI BGC Max Planck Institute for Biogeochemistry 

MRV Measurement, Reporting and Verification 

MWIR Mid-Wavelength InfraRed 

NASA National Aeronautics and Space Administration 

NDCs Nationally Determined Contributions  

NIES National Institute for Environmental Studies 

NIR Near InfraRed 

NOAA National Oceanic and Atmospheric Administration 

OCO Orbiting Carbon Observatory 

ODIAC Open-source Data Inventory for Anthropogenic CO2 

OMI Ozone Monitoring Instrument 

RBF Radial Basis Function 

SCIAMACHY SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY 

SDGs Sustainable Development Goals 

SWIR Short Wavelength InfraRed 

TCCON Total Carbon Column Observing Network 

TFI Task Force on National Greenhouse Gas Inventories  

TIR Thermal InfraRed 

TROPOMI TROPOspheric Monitoring Instrument  
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UN United Nations 

UNFCCC United Nations Framework Convention on Climate Change  

UV Ultra Violet 

VISIT Vegetation Integrative SImulator for Trace gases 

WDCGG World Data Center for Greenhouse Gases 

WMO World Meteorological Organization 

WMO GAW World Meteorological Organization Global Atmospheric Watch 

WRF Weather Research and Forecasting  
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APPENDIX-3 LIST OF GREENHOUSE GAS MEASURING SATELLITES 
 

Table. List of Past and Existing Satellites for Remote Sensing of Greenhouse Gases Using the SWIR Region. 
Satellite Envisat Instrument SCIAMACHY 
Country / Organization (Satellite) ESA 

(Instrument) Germany, 
Netherlands, and Belgium 

Period 2002 - 2012 

Orbit Type / Altitude Sun synchronous / 782 km Orbit Recurrent Period 35 days 
Type of Instrument Nadir and limb viewing grating imaging spectrometer 
Spectral Range UV to SWIR Target Gases O3, NO2, BrO, SO2, 

HCHO, OClO, H2O/D2O, 
CH4, CO, CO2 

Swath 1000 km Nadir Footprint Size 32 x 60 km  
Project Website http://www.sciamachy.org 

http://www.esa-ghg-cci.org/   
Data Website http://www.sciamachy.org/products/ 

http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_D
ATA.html  

Level 1B ATBD https://earth.esa.int/documents/700255/708683/ENV-ATB-DLR-SCIA-0041-6-SCIA-L1
B-ATBD.pdf 

Leve 2 Algorithm 
Documentation 

See links to ATBDs on 
http://www.esa-ghg-cci.org/sites/default/files/documents/public/documents/GHG-CCI_D
ATA.html  
 

Validation Report http://www.esa-ghg-cci.org/?q=webfm_send/352  
 

Detailed Product 
Information 

http://www.esa-ghg-cci.org/index.php?q=webfm_send/160 
 

 
Satellite GOSAT Instrument TANSO-FTS 
Country / Organization Japan Period 2009 - present 
Orbit Type / Altitude Sun synchronous / 666 km Orbit Recurrent Period 3 days 
Type of Instrument Nadir viewing Fourier transform spectrometer 
Spectral Range SWIR and TIR Target Gases CO2, CH4, and H2O 
Cross Track Pointing ±35 ° Nadir Footprint Size 10.5 km (diameter) 
Project website http://www.gosat.nies.go.jp/en/index.html 

http://www.jaxa.jp/projects/sat/gosat/ 
Data Website https://data2.gosat.nies.go.jp 
Level 1 ATBD  - 
Level 2 ATBD (SWIR) https://data2.gosat.nies.go.jp/doc/documents/ATBD_FTSSWIRL2_V2.0_en.pdf 

(TIR) - 
Validation Report (SWIR) 

https://data2.gosat.nies.go.jp/doc/documents/ValidationResult_FTSSWIRL2_V02.xx_G
U_en.pdf 
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Satellite OCO-2 Instrument  - 
Country / Organization US Period 2014 - present 
Orbit Type / Altitude Sun synchronous / 705 km Orbit Recurrent Period 16 days 
Type of Instrument Grating imaging spectrometer 
Spectral Range SWIR Target Gases CO2 
Swath 10.3 km Nadir Footprint Size 1.3 x 2.3 km 
Project website https://oco.jpl.nasa.gov 
Data Website https://daac.gsfc.nasa.gov 
Level 1 ATBD https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L1B_ATBD.V7.pd

f 
Level 2 ATBD https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_L2_ATBD.V6.pdf 
Validation Plan https://oco.jpl.nasa.gov/files/ocov2/OCO-2_SciValPlan_111005_ver1_0_revA_final_sig

ned1.pdf 

 
Satellite TanSat Instrument ACGS (Former CDS)  
Country / Organization China Period 2016 - present 
Orbit Type / Altitude Sun synchronous / ≈700km Orbit Recurrent Period  16 days 
Type of Instrument Grating imaging spectrometer 
Spectral Range SWIR Target Gases CO2 
Swath  - IFOV  - 
Project website  - 
Data Website http://chinageoss.org/tansat/index.html 

http://data.nsmc.org.cn/portalsite/default.aspx 
Level 1 ATBD  - 
Level 2 ATBD  - 
Validation Plan  - 
 
Satellite Sentinel 5p Instrument TROPOMI 
Country / Organization EC Period 2017 - present 
Orbit Type / Altitude Sun synchronous / 824 km Orbit Recurrent Period 17 days 
Type of Instrument Grating imaging spectrometer 
Spectral Range UV and SWIR Target Gases CO, HCHO, CH4, NO2, 

SO2, and O3 
Swath 2600 km Nadir Footprint Size 7 x 7 km  
Project website http://www.tropomi.eu, http://www.tropomi.nl 
Data Website - 
Level 1 ATBD http://www.tropomi.eu/sites/default/files/files/S5P-KNMI-L01B-0009-SD-algorithm_the

oretical_basis_document-8.0.0-20170601_0.pdf 
Level 2 ATBD (CH4)http://www.tropomi.eu/sites/default/files/files/SRON-S5P-LEV2-RP-001_TROPO

MI_ATBD_CH4_v1p0p0_20160205.pdf 
 
Note : The SWIR region includes O2A band around 760 nm. 
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