

Key driver for growing energy demand

C) Global Energy intensity: technical potential for energy efficiency largely exploited

Cost development of renewable electricity generation

Fossil Fuels costs (Imports)

	2005	2010	2020	2030	2040	2050
Oil (\$ ₂₀₀₅ /barrel)	52,5	100	110	120	130	140
Natural Gas (\$ ₂₀₀₅ /GJ)	5,8	10	13,3	17,2	20,6	23
Coal (\$ ₂₀₀₅ /t)	76,8	143	194	251	311	359

The Energy [R]evolution scenario saves 91 Exa-Joule by 2020 – compared to the Reference Scenario – this is equal to Europe's current total energy demand.

Most important mesasures:

- Building insulation
- Strict efficiency standards for all electrical applications
- Strict efficiency standards for all vehicles,

figure 6.4: global: projection of final energy demand by sector for the two scenarios

the energy [r]evolution: shift towards renewables

Renewable energy shares:

	Primary	Final
	energy	energy
today:	12.9 %	16.4%
2020:	21.0 %	24.4%
2030:	30.9%	33.8%
2050:	56.1%	56.8%

figure 6.13: global: development of primary energy consumption under the two scenarios

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

The heating sector:

- Heating/Cooling Demand: -8500 PJ/a by 2020 -46,000 PJ/a by 2050
- Production: 2005: 24% RE, 2020: 34% RE 2050: 71% RE

figure 6.6: global: development of heat demand by sector

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

250,000 — 200,000 — 150,000 — 100,000 — 2005 2010 2020 2030 2040 2050

INDUSTRY

OTHER SECTORS

GREENPEACE

TRANSPORT

figure 6.11: global: development of heat supply structure under the two scenarios

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

Power Sector

- Demand: 2,580 TWh by 2020 and 12,145 TWh by 2050
- Generation: 2005: 18% RE 2020: 33% RE 2050: 77% RE

figure 6.5: global: development of electricity demand by sector

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO; OTHER SECTORS = SERVICES, HOUSEHOLDS)

figure 6.7: global: development of electricity supply structure under the two scenarios

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

renewable electricity generation

figure 6.8: global: growth of renewable electricity generation under the energy [r]evolution scenario

BY INDIVIDUAL SOURCE

Global RE capacities quadruples by 2050

Renewables 24/7

figure 33: wind speed in the north sea during august 2003 (extreme summer event).

August 2003:

2 weeks no wind within the North Sea area

No problem as solar photovoltaic could have supplied the needed power

figure 36a: power production (in MW) from different sources and overall demand in europe during extreme august event.

Power generation costs:

• Reference in 2050: US\$ 7,3 Billion

• Energy [R]evolution in 2050: US\$ 4 Billion

• Break even: around 2015 - 2020

figure 6.9: global: development of specific electricity generation costs under the two scenarios

(CO2 EMISSION COSTS IMPOSED FROM 2010, WITH AN INCREASE FROM 15 \$/T_{CO2} IN 2010 TO 50 \$/T_{CO2} IN 2050)

Global CO₂-Reduction - Basis:

Global CO₂-Reduction - Basis:

Energy related CO2 emissions - reductions based on 1990 levels:

2005: +14% 2010: +26% 2020: +19% 2030: -2% 2040: -27% 2050: -51%

figure 6.14: global: development of CO₂ emissions by sector under the energy [r]evolution scenario

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

figure 2: CO2 emssions by region in 2005 and 2020

TRANSPORT

INDUSTRY

OTHER SECTORS

PUBLIC ELECTRICITY & CHP

figure 2.1: ftsm scheme

Financing the energy [r]evolution in developing countries

FTSM

roles and responsibilities

developing country:

Legislation:

- · feed-in law
- · guaranteed grld access
- licensing

(inter-) national finance institute(s)

Organising and Monitoring:

- · organize financial flow
- · monitoring
- · providing soft loans
- · guarantee the payment of the feed-in tariff

OECD country

Legislation:

- CO2 credits under CDM
- tax from Cap & Trade
- · auctioning CO2 Certificates

Key parameter	CONVENTIONAL POWER GENERATION COSTS [CT/KWH]	AVERAGE FEED-IN TARIFF EXCL. SOLAR PV [CT/KWH]	FEED-IN TARIFF FOR SOLAR PV [CT/KWH]	SPECIFIC CO2 REDUCTION PER KWH [GCO2/KWH]
2010	5	12	20	0.871
2020	10	11	15	0.864
2030	10	10	10	0.857

figure 5.2: feed in tariffs with conventional power generation

- AVERAGE FEED-IN TARIFF EXCL SOLAR
- AVERAGE FEED-IN TARIFF SOLAR
- AVERAGE CONVENTIONAL POWER GENERATION COSTS

table 5.2: results of study of costs of proposed Feed-In Tariff Support Mechanism

KEY RESULTS TOTAL NON-OECD	YEAR	TOTAL RENEWABLE ELECTRICITY GENERATION UNDER FTSM PROGRAM [TWH]	AVERAGE ANNUAL CO2 EMISSION CREDITS [MILLION T CO2]	TOTAL CO2 CERTIFICATES PER PERIOD [MILLION T CO2]	AVERAGE CO2 COST PER TON [\$/TCO2]	TOTAL ANNUAL COSTS [BILLION \$]	TOTAL COSTS PER PERIOD [BILLION \$]
Period 1	2010-2019	36,326	3,217	32,169	26	72	717
Period 2	2020-2030	93,511	7,330	80,633	13	77	847
Period 1+2	2010-2030	129,837	5,273.6	112,802	19.8	74.4	1,564

table 5.3: renewable power for non-oecd countries under ftsm program

Total-new RE	71	243	713	2,167	6,398	Total-new RE	19.57	73.67	234.71	590.13	1,759.56
Ocean Energy	0	0	9	33	77	Ocean Energy	0.00	0.00	2.51	9.20	21.00
Solar Thermal	1	4	26	388	1,708	Solar Th e rmal	0.24	1.71	10.28	38.10	130.35
Geothermal	20	31	54	123	288	Geothermal	3.57	4.96	8.66	17.95	42.17
Biomass	41	124	296	529	950	Biomass	10.03	27.90	65.30	111.00	168.74
PV	0	4	18	139	1,080	PV	0.08	2.64	12.51	60.77	506.23
Wind	10	80	310	956	2,296	Wind	5.65	36.46	135.45	353.12	891.07
ELECTRICITY GENERATION [TWH/A]	2005	2010	2015	2030	2030	INSTALLED CAPACITY [GW]	2005	2010	2015	2030	2030

energy [r]evolution

+ approx. 25 National E[R] scenarios

A SUSTAINABLE WORLD ENERGY OUTLOOK

"THE RESERVES OF RENEWABLE ENERGY THAT ARE TECHNICALLY ACCESSIBLE GLOBALLY ARE LARGE ENOUGH TO PROVIDE ABOUT SIX TIMES MORE ENERGY THAN THE WORLD CURRENTLY CONSUMES - FOR EVER."

Thank you!

More Information: ww.energyblueprint.ino

EREC

August 1997: Wenig Wind und PV in Europa Lösung: Netzausbau um CSP in Afrika und Wasserkraft in Skandinavian und Europa zu nutzen

figure 32: available wind power (in GW) according to energy [r]evolution scenario in january 1997 compared to 30 years average. (6 hour values)

figure 30: available solar PV power (in GW) according to Energy [R]evolution scenario in january 1997 compared to 5 years average. (1 hour values)

figure 35: power production (in MW) from different sources and overall demand in Europe during extreme January event.

The renewable energy industry – Status Quo

SELECTED INDICATORS AND TOP FIVE COUNTRIES

SELECTED INDICATORS	2006 🐤	2007 🐤	2008
Investment in new renewable capacity (annual)¹	63 🐤	104 🐤	120 billion USD
Renewables power capacity (existing, excl. large hydro)	207 🐤	240 🐤	280 GW
Renewables power capacity (existing, incl. large hydro)	1,020 🐤	1,070 ┝	1,140 GW
Wind power capacity (existing)	74 🐤	94 🐤	121 GW
Grid-connected solar PV capacity (existing)	5.1 🐤	7.5 🐤	13 GW
Solar PV production (annual)	2.5 🐤	3.7 🐤	6.9 GW
Solar hot water capacity (existing)	105 🐤	126 🐤	145 GWth
Ethanol production (annual)	39 🐤	50 🐤	67 billion liters
Biodiesel production (annual)	6 🐤	9 🐤	12 billion liters
Countries with policy targets		66 🐤	73
States/provinces/countries with feed-in policies ²		49 🐤	63
States/provinces/countries with RPS policies		44 🐤	49
States/provinces/countries with biofuels mandates		53 🐤	55

figure 1.1: new renewable energy installed worldwide, 2008, after REN 21 Renewable Energy Outlook 2008

figure 1.2: top five countries for renewable energy installation in 2008, after Ren21 (2008)

WIND

Y	Wind	1 29% in 2008	1 600% since 2004
	Solar photovoltaic (PV)	1 70% in 2008	1 250% since 2004
	Small hydro power		↑75% since 2004

a blueprint for a Europe's renewable energy future

figure 7.2: average annual growth rates of renewable energy capacity, 2002-2006

table 7.2: required production capacities for renewable energy technologies in different scenarios

NEW RENEWABLE ELECTRICITY GENERATION TECHNOLOGIES	2010	2020	2030	2040	2050	TOTAL INSTALLED CAPACITY IN 2050	ELECTRICITY SHARE UNDER EIRI DEMAND
			INCLUD	ES PRODUCTIO FOR R	ON CAPACITY EPOWERING		PROJECTION IN 2050
	GW/a	GW/a	GW/a	GW/a	GW/a	GW	%
Solar Photovoltaics PRODUCTION CAPACITY IN 2007 (APPROX. 5-7 GW)							
Reference	2	5	5	5	5	153	0
Energy [R]evolution	4	40	65	100	125	2,911	10
Advanced	4	45	165	165	165	3,835	13
Concentrated Solar Power PRODUCTION CAPACITY IN 2007 (APPROX. 2-3 GW)							
Reference	0.5	0.5	0.5	0.5	0.5	17	0
Energy [R]evolution	1	12	17	27	33	801	12
Advanced	1	15	32	65	105	2,100	32
Wind PRODUCTION CAPACITY IN 2007 (APPROX. 25 GW)							
Reference	25	25	25	25	25	593	4
Energy [R]evolution	30	82	85	100	100	2,733	18
Advanced	36	142	165	165	165	3,500	23
Geothermal PRODUCTION CAPACITY IN 2007 (APPROX. 1-2 GW)							
Reference	1	1	1	1	1	36	1
Energy [R]evolution	1	5	6	10	10	276	4
Advanced - not avallable							
Ocean PRODUCTION CAPACITY IN 2007 (APPROX. >1 GW)							
Reference	0.2	0.2	0.2	0.3	0.3	9	0
Energy [R]evolution	0	2	3	5	10	194	2
Advanced - not avallable							
Total PRODUCTION CAPACITIES PRODUCTION CAPACITY IN 2007 (APPROX.)							
Reference	28	32	31	31	31	808	5
Energy [R]evolution	36	141	176	242	278	6,916	46
Advanced	41	202	362	395	435	9,435	68

figure 7.4: change in cumulative power plant investment in the energy [r]evolution scenario

Investitionen in Erneuerbare Energien bis 2030: 9 Billionen Dollar

figure 11: investment shares - reference versus energy [r]evolution

reference scenario 2005 - 2030

energy [r]evolution scenario 2005 - 2030

table 1.0: renewable electricity employment - selected countries and world

All sectors	World estimate	1.3° - 1.7′ million
Geothermal	Germany United States	4,500° 9,000°
Hydropower	Europe United States Spain (small hydro)	20,000 8,000³ 6,661⁵
Blomass power	United States Spain	66,000ª 4,948ʰ
Solar Thermal electricity	United States Spain	800ª 968º
	World estimate	170,000 ^t
Solar PV	Germany Unlted States Spaln	50,700 ⁹ 6,800ª 26,449 ^b
	World estimate	300,000 ^f
Wind	Germany Unlted States Spaln Denmark India	84,300 ⁹ 16,000 ^a 32,906 ^b 21,612 ^c 10,000 ^d
ENERGY SOURCE	SELECTED COUNTRI	ES

Global renewable energy market: Case Study: Germany

figure 1.4: jobs in the renewable sector in germany

Working for the Climate: The Job [R]evolution

	LLOIT	B. I. I			1101	
- 1	USI	IM I	- < `	SAS	$11 \le 1$	ПΔТ
	\sim \sim \sim	1 34 1		, ,	00	

IN COAL SECTOR BY 2030

ENERGY [R]EVOLUTION

a largely coal dependent economy	②	huge renewable & ene efficiency deployment	
2010	9.1 million	2010	9.3 million
2020	8.5 million	2020	10.5 million
2030	8.6 million	2030	11.3 million
Total loss in energy sector over period	500,000	Total gain in energy sector over period	2 million
JOBS IN RENEWABLES DO BALANCE OUT LOSSES	NOT	2.7 MILLION MORE JOBS THAN WITH 'BUSINESS AS	

Working for the Climate: The Job [R]evolution

- Under the Energy [R]evolution, the whole power sector would be employing about 2 million more than now (2.7 million more people than the 'business as usual' scenario). Without the Energy [R]evolution, the coal sector would be providing most of the power, but not as much employment.
- Under business as usual, there will be about 500,000 jobs lost in the power sector, because the 2 million reduction in coal power jobs is not compensated for by the rise in renewable and efficiency jobs.
- Coal, gas, oil and diesel sectors would provide around 2.5 million fewer jobs under an Energy [R]evolution scenario.
- The renewable sector would support 6.9 million jobs about
 5.3 million jobs more under the Energy [R]evolution scenario.

table 3.1: global: summary of results

		REFERENC	E SCENARIO	[R]EVOLUTION SCENARI				
Jobs (millions)	2010	2020	2030	2010	2020	2030		
Coal	4.65 m	3.16 m	2.86 m	4.26 m	2.28 m	1.39 m		
Gas	1.95 m	2.36 m	2.55 m	2.08 m	2.12 m	1.80 m		
Nuclear, oil and diesel	0.61 m	0.58 m	0.50 m	0.56 m	0.31 m	0.13 m		
Renewable	1.88 m	2.41 m	2.71 m	2.38 m	5.03 m	6.90 m		
Energy supply jobs	9.1	8.5	8.6	9.3	9.7	10.2		
Energy efficiency Jobs	-	-	-	0.06	0.72	1.13		
Total Jobs	9.1	8.5	8.6	9.3	10.5	11.3		
Electricity generation (TWh)								
Coal	9,283	12,546	16,030	8,751	8,953	7,784		
Gas	4,447	6,256	7,974	4,704	6,126	6,335		
Nuclear, oil & diesel	4,004	4,133	4,079	3,814	2,309	1,003		
Renewable	4,047	5,871	7,286	4,254	8,355	14,002		
TOTAL electricity generation (TWh)	21,780	28,807	35,369	21,523	25,743	29,124		

Note: This underestimates energy efficiency Jobs because it only includes Jobs additional to the Reference scenario.

table 4.5: capacity, investment, and direct jobs - wind

UNIT	2010	2020	2020			
			2030	2010	2020	2030
GW	114	293	295	154	802	1,405
TWh	274	887	1,260	362	2,255	4.208
%	1%	3%	4%	2%	9%	15%
Jobs	0.29 m	0.36 m	0.41 m	0.43 m	1.26 m	1.38 m
Jobs	0.07 m	0.15 m	0.18 m	0.09 m	0.43 m	0.65 m
	0.36 m	0.51 m	0.59 m	0.52 m	1.68 m	2.03 m
	TWh % Jobs	TWh 274 % 1% Jobs 0.29 m Jobs 0.07 m	TWh 274 887 % 1% 3% Jobs 0.29 m 0.36 m Jobs 0.07 m 0.15 m	TWh 274 887 1,260 % 1% 3% 4% Jobs 0.29 m 0.36 m 0.41 m Jobs 0.07 m 0.15 m 0.18 m	TWh 274 887 1,260 362 % 1% 3% 4% 2% Jobs 0.29 m 0.36 m 0.41 m 0.43 m Jobs 0.07 m 0.15 m 0.18 m 0.09 m	TWh 274 887 1,260 362 2,255 % 1% 3% 4% 2% 9% Jobs 0.29 m 0.36 m 0.41 m 0.43 m 1.26 m Jobs 0.07 m 0.15 m 0.18 m 0.09 m 0.43 m

"For each job lost in the coal industry, 3 jobs will be created in the renewable industry."

Renewables are more labour intensive, but they don't need fuel!

table 4.9: capacity, investment, and direct jobs - coal

	REFERENCE SCENARIO				[R]EVOLUTION SCENARIO		
Energy parameters	UNIT	2010	2020	2030	2010	2020	2030
Installed capacity	GW	1,477	2,054	2,665	1,400	1,460	1,263
Generated electricity	TWh	8,575	11,771	15,117	8,110	8,313	7,067
Share of total supply	%	40%	46%	52%	38%	32%	24%
Direct jobs		2.01 m	1.11 m	0.94 m	1.76 m	0.50 m	0.05 m
Construction and manufacturing	Jobs	0.26 m	0.27 m	0.29 m	0.25 m	0.20 m	0.14 m
Operations and maintenance	Jobs	1.93 m	1.49 m	1.38 m	1.90 m	1.25 m	0.88 m
Total jobs		4.20 m	2.87 m	2.60 m	3.91 m	1.94 m	1.07 m

table 7.3: fuel and investment costs in the reference and the energy [r]evolution scenario

INVESTMENT COST	DOLLAR	2005-2010	2011-2020	2021-2030	2005-2030	2005-2030 AVERAGE PER YEAR
DIFFERENCE EIR] VERSUS REF						
Total Fossil & Nuclear	billion \$ 2005	-101	-967	-1,443	-2,511	-100
Total Cogeneration	billion \$ 2005	89	678	902	1,669	67
Total Renewables	billion \$ 2005	136	1,637	2,514	4,287	171
Total	billion \$ 2005	124	1,348	1,973	3,445	138
SAVINGS REF VERSUS E[R]						
Fuel Oil	billion \$/a	27	438	949	1,415	/ 57
Gas	billion \$/a	-59	-147	1,291	1,085	43
Coal	billion \$/a	185	3,476	12,241	15,901	636
Lignite	billion \$/a	7	100	236	343	14
Total Fossil Fuel Savings	billion \$/a	161	3,866	14,716	18,744	750
•					/	' /

Factor 5

Governments around the world must show that they are serious about climate change by acting now to bring about an Energy [R]evolution.

☐Standby power is wasted power. Globally, we have 50 dirty power plants running just for our wasted standby power.

We need our global leaders to:

- 1. Phase out all subsidies for fossil fuels and nuclear energy
- Internalise the external (social and environmental) costs of energy production through "cap and trade" emissions trading
- 3. Mandate strict efficiency standards for all energyconsuming appliances, buildings and vehicles
- 4. Establish legally binding targets for renewable energy and combined heat and power generation
- 5. Reform the electricity markets by guaranteeing priority access to the grid for renewable power generators
- 6. Provide defined and stable returns for investors, for example by feed-in tariff programmes
- 7. Increase research and development budgets for renewable energy and energy efficiency.

☐ For a full copy of the report and to join the Energy [R]evolution, go to: http://www.greenpeace.org/energyrevolution

The Energy [R]evolution: More energy equity for developing countries

figure 1: energy use per capita

Climate policy targets

- Stabilize global CO₂-concentration under 400 ppm
- Global CO2 emission peak by 2015
- Reduction of Global energy related CO₂-emissions from today's 29 Gt/a to approx. 10 Gt/a in 2050
- Per capita emissions by 2050: ~ 1 tCO2/a

Energy Policy targets:

- Rapid fossil fuel phase-out
- Only proven technology will be used
- Achieve global climate target with a parallel nuclear phase-out
- Equity and fairness, sustainable economic growth

The logic of the "energy [r]evolution scenario"

From principles to practice - Use the current "time window" for

Step 1: Energy Efficiency

Step 2: Structural Changes

- Decentralised energy and large scale renewables
- Cogeneration

Step 3: Energy Efficient Transport

- Efficient Public Transport Systems
- Efficient Cars, Trucks etc.
- Sustainable biofuels

Scenario principles in a nutshell

- Smart consumption, generation and distribution
- Energy production moves closer to the consumer
- Maximum use of locally available, environmentally friendly fuels

