

World First Invention

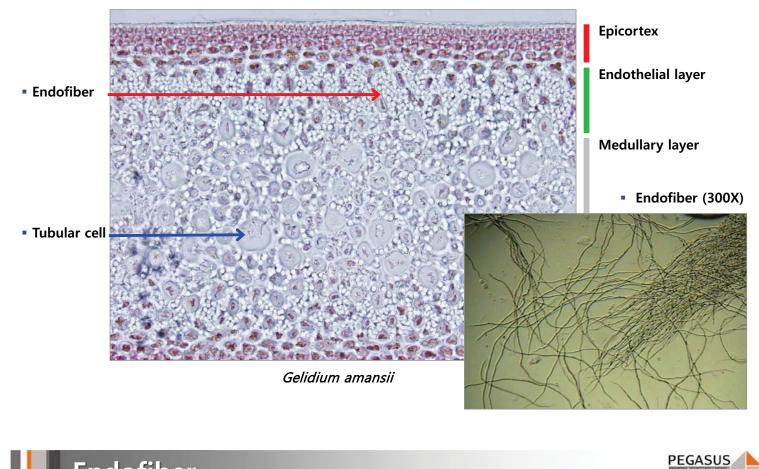
Invented in Korea, Patents Applied for 43 Countries (Obtained from 41 Countries)

PEGASUS

Obtained Patent, 41 Countries (as of March, 2010)

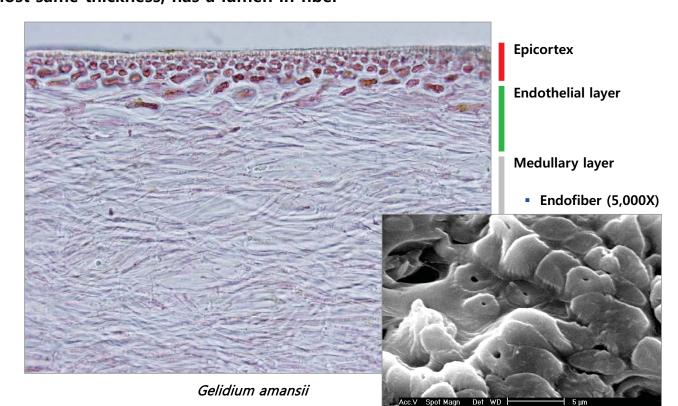
Republic of Korea, Vietnam, Indonesia, Australia, Mexico, South Africa, Russia, Austria, Belgium, Bulgaria, Switzerland, Cyprus, Czech, Germany, Denmark, Estonia, Spain, Finland, France, United Kingdom, Greece, Hungary, Ireland, Iceland, Italia, Liechtenstein, Luxemburg, Monaco, Netherland, Poland, Portugal, Romania, Sweden, Slovenia, Slovakia, Turkey, Canada, USA, Japan, China, India

(Patent applications outstanding for another 2 countries)



 국제사무국은 수리관정에 의한 기록원본의 송달을 감시 (서식 PCT/BJ301), 국제사무국은 우선일부터 14월이 건 때에는 출원인에게 이를 통지합니다. (규칙 22.1(c)). 		
수리관청명칭 및 우편주소	특허청장	_

Structure of Red Algae



Endofibers for Pulp and the polysaccharide for Bio-energy

Endofiber

Almost same thickness, has a lumen in fiber

Advantages of Marine Plants

Properties	Land Plants (Air)	Marine Plants (Water)		
Habitat	 Soil, but stem and leaves are exposed to the air 	 Root, stem, leaves are all in water 		
Space	 Air (density=1), affected by gravity 	 Water holds buoyancy and viscosity Density is 850 times higher than that of air 		
	 Has to support itself against gravity 			
Sustainability	Requires extra energy to strengthen its branches	Marine plants sustained by buoyancy		
Sustanuomty	 Growth of climbing type plants is faster than that of bush type plants 	Demands small amount of energy to sustain		
_	 Air temperature change greatly varies seasonally and day and night 	 Temperature change in water is not as dramatic as it is in the air 		
Temperature	 Epidermal cell (bark) has advanced to adapt itself to temperature changes, requiring additional energy (ex. coniferous tree) 	 Therefore, epidermal cell is thin, enabling high level of energy efficiency 		
System	 Roles of root, stalk and leaf are clearly distinguished 	 Root only serves the role of providing 'anchor' in substrate 		
Nourishment	 Root is the only channel to suck up water from the earth 	 Absorbs nutrients from the surrounding water directly into the cells 		
	 Source of water and nutrients are limited to the reach of roots 	 Oceanic circulation helps sustain marine life by stirring up the chemical nutrients in the water and carrying them 		
Reproduction	 Requires considerable amount of energy to produce fruit and seed for reproduction Seasonal limitation 	 Asexual reproduction enables harvesting in growth period before it develops reproduction ability 		
Growth	 Energy is used to sustain and adapt itself to the surrounding temperature and to reproduce, leading to slow grow 	 Energy is used for growth only, enabling faster growth than that of land plants 		

Why Red Algae?

PEGASUS

Red Algae has higher commercial value than Green Algae or Brown Algae

		Condition	Dry or Wet Weight (per 100g)				
Division	Species		Moisture	Carbohydrates		Others	
				Saccharinity	Fiber	Others	
Green	Enteromorpha prolifera	Dry	12.8	42.2	4.3	40.7	
	Entromorpha compressa	Wet	87.6	3.0	0.5	8.9	
	Ulva pertusa	Dry	13.7	40.1	3.4	42.8	
Brown	Hizkia fusiformis	Wet	88.1	4.0	1.0	6.9	
	Laminaria japonica	Wet	91.0	3.6	0.6	4.8	
	Laminaria japonica	Dry	12.3	41.1	4.1	42.5	
	Undaria pinnatifida	Wet	87.6	4.8	0.3	7.3	
	Undaria sp.	Dry	16.0	33.9	2.4	48.0	
Red	Gracilaria sp.	Wet	89.1	5.9	0.3	5.0	
	Gelidium elegans	Wet	70.3	18.5	3.0	8.2	
	Agar-agar, powdered		20.1	74.6	0	5.3	
Product	Agar-gel		99.0	0.8	0	0.2	

National Fisheries Research and Development Institute of Korea, 1995

Applications of Red Algae

Classification	Field of Application	Remarks
	Food and Cosmetics	 It is currently used as a source of food (agar), cosmetics, medical supplies Red algae can be cultivated, Daily growth rate is about 3-13% CO₂ absorption level per unit area is higher than that of forest It is relatively easy to develop hybrid plants by cross breeding
	Pulp and Paper	 Pulp can be produced 100% from Red Algae, without cutting down trees Environment friendly production process eliminates use of toxic chemicals Simple production process, high energy efficiency Red algae pulp is suitable for production of high quality paper, realizing high value
	Bio-ethanol	 Ethyl alcohol can be produced by fermenting agar Mass farming of red algae enables production of bio-ethanol at even cheaper price than making it from corn When producing pulp with red algae, agar is produced as a by-product, which means "free raw materials" By building a pulp plant geographically in proximity with a red algae farm, red algae can serve as an energy source
	Biocomposite Material	 Can substitute for packaging materials such as plastic and styrofoam that pollute environment Applicable as a material for natural polymer matrix Agar can serve as a partial substitute for industrial starch
<u>i</u>	Agar Medium and Agarose	 Materials for culture of microorganism agar medium for biochemical test labs (Raw material for agar medium for cultivation with microorganism used in biological laboratory) Highly refined agarose is a high value and expensive product

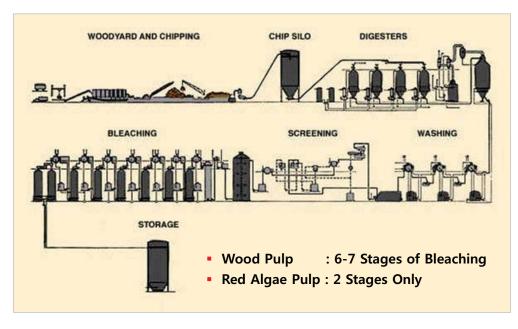
Advantages of Red Algae Pulp

High quality Pulp and Paper made from Red Algae's Endofiber

	Wood Pulp	Red Algae Pulp	Beflam 200
ANK!	Thick	Thin	
-hast	Not Equal Length	Equal Length	
	Wood Paper	Red Algae Paper	
	Coarse	Smooth	
	Requires Filler	High Opacity	

PEGASUS

PEGASUS


Comparison to Wood Pulp

Wood Pulp	Vs.	Red Algae Pulp
	Appearance (Drawing)	
Bar, Stick, String	Figure	Pipe, Hose, Straw
Dry Normally (Ordinary)	Wet Condition	Dry Slowly, Effluence Slowly
Absorb Liquid Normally (Ordinary)	Dry Condition	Absorb Liquid Quickly & Plenty
Different every single fiber	Shape & Size	Almost Equality

Comparison to Wood Pulp

Red Algae Pulp, Only 20% of Wood Pulp Process, Saving Energy & CO₂ Reduction

- Wood Pulp : 180°C, 8 Hours, NaOH
- Red Algae Pulp : 100°C, 2 Hours, Water (No Lignin Removal)

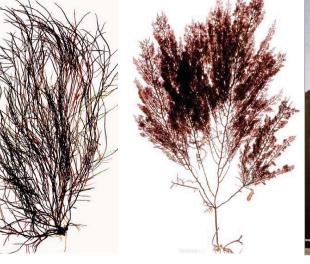


PEGASUS

Wood Pulp Process

Red Algae Pulp→

ClO₂ [5% of aqueous solution] Dilute to 10,000 times of water, it's tab water itself

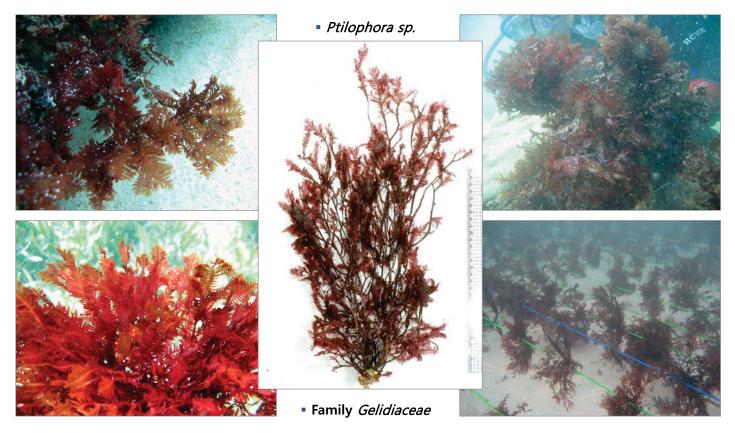


Species in *Gelidium* family

Large Species in *Gelidium* family (Family *Gelidiaceae*)

- Pterocladia lucida
- Genus Pterocladia
- Length : 40cm

- Gelidium asperum
- Genus Gelidium
- Length : 50cm
- Gelidium robustum
- Genus Gelidium
- Length : over 50cm


PEGASUS

PEGASUS

 Gelidium robustum from Mexico

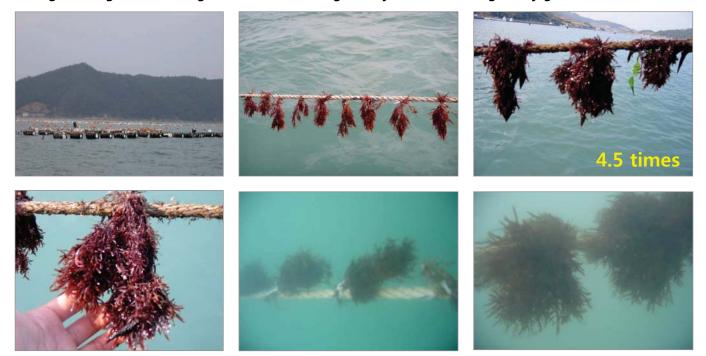
Large Scale Cultivation

Gelidium Cultivation

• Aquaculture of *Gelidium*

- FAO report, 1987
- Maximum daily growth rate = 6.5%, double fold growth in 30 days
- Images below show maximum 6 fold growth in 60 days (Research already done in Korea)

The attempts to grow these species under free-floating conditions represent an alternative approach. The first such attempt were performed with Hawaiian populations of <u>Pterocladia</u> (Santelices, 1976) and, more recently, species of <u>Gelidium</u> from India and Norway have been maintained in free-floating conditions with growth rates up to 6.5% daily. This type of cultivation has been initiated with the three Chilean species of <u>Gelidium</u>. <u>Gelidium chilense</u> was the species with fastest growth, a doubling time of about 30 days. The capacity of these algae to grow free floating is related to their ability to adopt a globular habit, devoid of holdfasts and with production of a profusion of radially-oriented branches. In <u>G. chilense</u> the thalli become globose after 28 days. Radially branching thalli of <u>G. ligulatum</u> resulted from proliferations appearing on the attachment parts of the thalli while <u>G. rex</u> did not show any growth or any modification of its morphology at all (Santelices, Oliger & Montalva 1981).



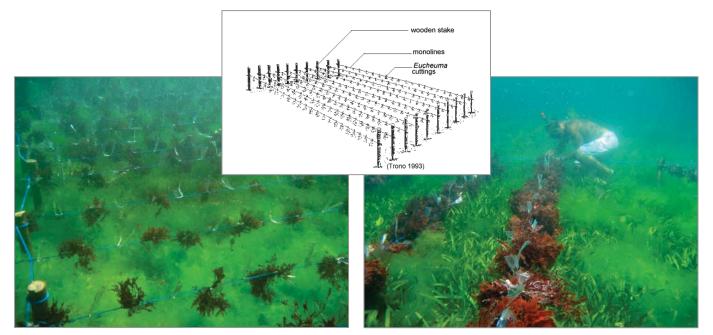
PEGASUS

- In 2006, Pterocladia tenuis trial cultivation experiment was conducted
- Pilot trial farm of PEGASUS is located in Dang-Mok Ri village, Wan-Doh county
- Organisms grew an average of 4.5 times during 30 days with an average daily growth rate of 4.23%

Trial Cultivation in Indonesia

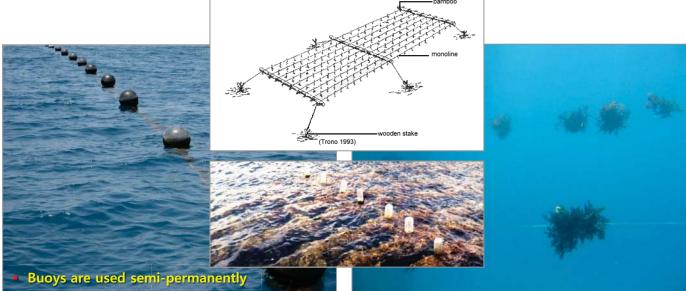
A Korean species Gelidium amansii, Transplanted to Indonesia

Trial pilot farm (Indonesia)


PEGASUS

Bottom Line Type

- Shallow waters up to 3m depth; Work can be done with mask and snorkel
- Piles are rammed down into sea bottom; Frame is made by winding think ropes around the piles
- 10m x 10m area is usually set as 1 unit; Thin ropes 5-10m long, and seeds are tied to the ropes
- The distance between ropes is 30-50cm, and between seeds is 20-30cm

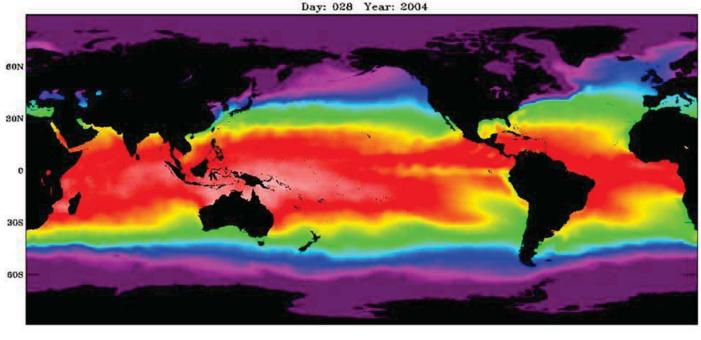


Cultivation Method #2

PEGASUS

Floating Line Type

- For large-scale cultivation at more than 3m depth
- The water depth does not matter if ropes can be fixed
- Concrete anchor is fixed on the sea-bed, and the rope is floated with plastic buoys to build the cultivation area
- Length of the ropes is 10m-100m; Ropes are installed by fixing them 30-50cm under the surface of the water


Waters Available for Cultivation

32

PEGASUS

Sea Surface Temperature

Source : NASA's Jet Propulsion Institute

 • Between latitude 15 degrees North and 15 degrees South

 2
 5
 8
 11
 14
 17
 20
 23
 26
 29

Sea Surface Temperature (C)

Cost of Cultivation

Reference on Cultivation Cost

- Seaweeds currently cultivated in large scale to meet the industrial demand are : Porphyra , Undaria, Laminaria, Gracilaria, Cottonii, etc.
- There are large differences in the demand and price among nations according to availability of cultivation and application, and the gap between export and local prices is also considerable
- Labor and material costs are included in the production cost of the cultivation farm, and the materials for cultivation are divided into permanent, semi-permanent and disposable

Production Cost for Seaweeds

Top cultivated seaweed genera in the world during 2000 (World Food Plan FAO 2003 Report)

Seaweeds Common names	Scientific names	Production amount (\$1 million)	Production weight (ton)	Cost per ton (U.S. \$)	Remarks
Green laver	Porphyra	1,118	1,011,000	1,105	
Sea mustard	Undaria	149	311,105	480	
Laminaria	Laminaria	2,811	4,580,000	613	
Gracilaria	Gracilaria	11	12,510	879	
Cottonii	Kappaphycus	46	628,576	73	Same methods
Total		4,632	5,972,737		

Cultivation in Indonesia

Bilateral Research Cooperation Contract with organizations in Indonesia since 2006

- Indonesian National Aquaculture Institute (Sekotong)
 - National Seaweed Center (Gerupuk)

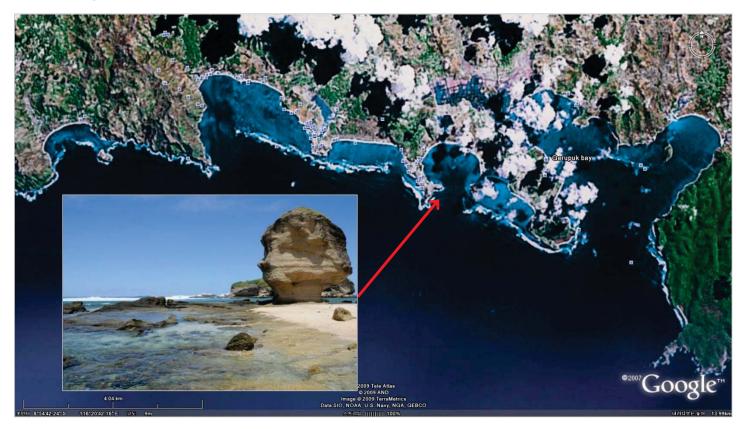
 12,139,042 ha. (121,390km²) cultivatable area available (official Indonesian government record)

National Aquaculture Institute

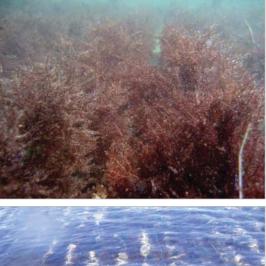
Research service contract

PEGASUS

Location of the Cultivation Site


- Lombok Island, Next to Bali in Indonesia

Location of the Cultivation Site


PEGASUS

"Gerupuk," the south coast of Lombok Island in Indonesia

Pictures of Cultivation Site #1

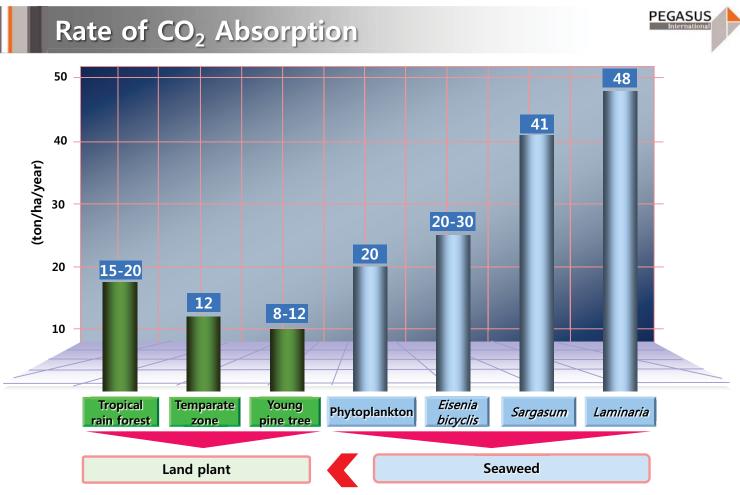
Actual pictures of *Gelidium* cultivation



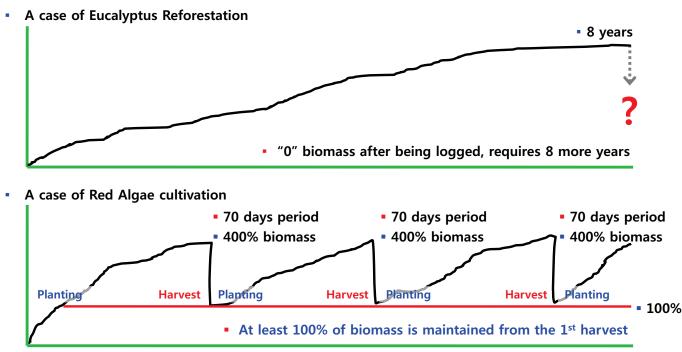
Pictures of Cultivation Site #2

Actual pictures of *Gelidium* cultivation

Remains after Agar Extract



• An Agar company in Morocco

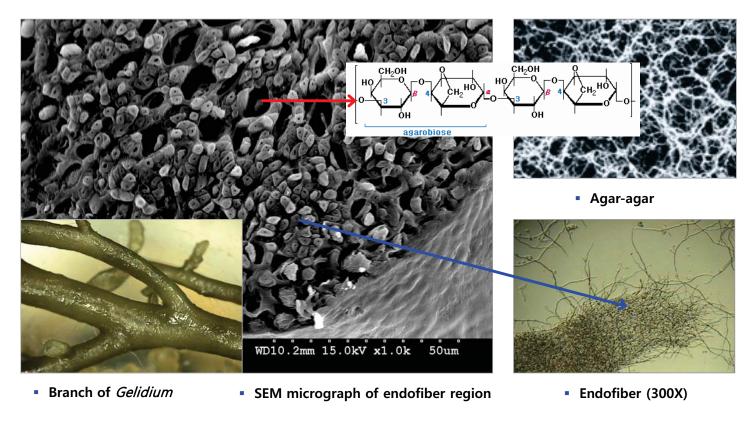

Source : Dr. Taniguchi (1998), Japan

PEGASUS

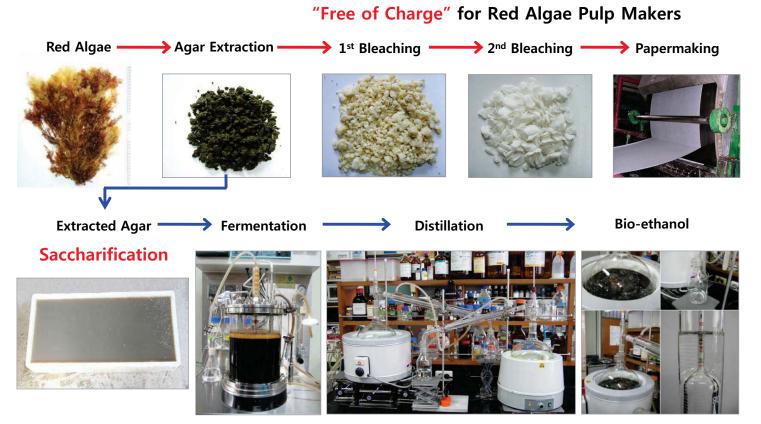
Concept for a Red Algal CO₂ Sink

CO₂ sink must be durable & sustainable

Reforestation on land vs. Cultivation of Red Algae on sea


 A fixed amount of biomass could be maintained in a certain farm size; therefore, the farm was suitable as a CO₂ sink for CDM business

Bio-energy from Red Algae


PEGASUS

Red Algae can make Polysaccharide (Galactan), which is similar to "Starch"

Bio-ethanol from Red Algae

Agar is a By-product of Pulping process,

Build New

Head Office, Institute and Pilot Plant

UNFCCC-COP16

PEGASUS

Cancun, Mexico 29 November to 10 December 2010

Contribution to the prevention of Global Warming by saving forests while producing pulp and paper without cutting down trees.