IPCC SRCCS Carbon Dioxide Sources and Capture

H-Holger Rogner h.h.rogner@iaea.org

Joint SBSTA/IPCC side-event Montreal November 30, 2005

Suitable CO₂ sources for capture

Large stationary point source

- High CO₂ concentration in the waste, flue gas or by-product stream (purity)
- \triangleright Pressure of CO₂ stream
- Distance from suitable storage sites

Global large stationary CO₂ sources with emissions of more than 0.1 MtCO₂ / year

Process	No. of sources Emissions (MtCO ₂ /yr					
Fossil Fuels						
Power (coal, gas, oil and others)	4,942	10,539				
Cement production	1,175	932				
Refineries	638	798				
Iron and steel industry	269	646				
Petrochemical industry	470	379				
Oil and gas processing	N/A	50				
Other sources	90	33				
Biomass						
Bioethanol and bioenergy	303	91				
Total	7,887	13,466				

Geographical relationship between sources and storage opportunities

Global distribution of large stationary sources of CO₂ (Based on a compilation of publicly available information on global emission sources, IEA GHG 2002)

Geographical relationship between sources and storage opportunities

Prospective areas in sedimentary basins where suitable saline formations, oil or gas fields, or coal beds may be found. Locations for storage in coal beds are only partly included. Prospectivity is a qualitative assessment of the likelihood that a suitable storage location is present in a given area based on the available information. This figure should be taken as a guide only, because it is based on partial data, the quality of which may vary from region to region, and which may change over time and with new information (Courtesy of Geoscience Australia).

Future CO₂ sources

- Global carbon dioxide emissions are on the rise and are projected to range from
 - 2020: 29 to 44 GtCO₂
 - **2050:** 23 to 84 GtCO₂

> The technical potential of CO₂ capture has been estimated at

- **2020:** 2.6 to 4.9 GtCO₂ or around 10%
- **2050:** 4.7 to 37.5 GtCO₂ or 20–40%
- > These emission and capture ranges reflect the inherent uncertainties of scenario and modelling analyses.

CO₂ capture processes and systems

Maturity of capture technology

Capture option	Research	Demon- stration	Economically feasible under specific conditions	Mature market
Post-combustion			X	
Pre-combustion			X	
Oxyfuel combustion		X		
Industrial separation (natural gas processing, ammonia production)				X

Difference between CO₂ captured and CO₂ emissions avoided

CO₂ produced (kg/kWh)

CO₂ capture from biofuel and synthetic fuel production

- CCS from biomass conversion could lead to negative emissions
 - Post-combustion capture
 - Pre-combustion capture
- Steam methane reforming (hydrogen production) already generates a CO₂ stream usable for CCS

Outlook

- ➢ CO₂ capture integration in advanced designs could reduce future CO₂ capture costs and energy penalties
- Future cost reductions will depend on deployment in the marketplace (technology learning) as well as sustained R&D
- CO₂ capture is the first step along the CCS chain

Real CO₂ capture installations

