Mobilizing Business for the Low Carbon Economy

Robert Yang, PhD

Durban, South Africa December 8, 2011

1

Key Considerations for the Implementation of Climate Change Mitigation

- The huge costs of climate change mitigation
 - International Energy Agency (IEA): 0.5 to 1.1 percent of world GDP in the next 20 years ...
 - and the total extra cost for mitigation would be \$45 trillion from now to 2050

The huge market opportunity > HSBC: to grow to annually \$ 1.0 trillion in 2020

Cost vs. Opportunity

How to manage this "cost vs. opportunity relationship" is, by far, the most significant consideration for any GHG reduction strategy.

Lessens from the Best Practice Economies

- To them, the huge costs of GHG reduction are huge "business opportunities ".
- They treat these business opportunities as valuable "resources" for the development of their green energy industries.
- With that they are able to set very aggressive targets for GHG reductions.
- This kind of strategies allow them to achieve effective GHG reductions and build world-competitive green energy industries at the same time.

3

The Formula for Climate Change Mitigation

The three essential components

- > Set aggressive GHG reduction targets
- Grow green energy industries
- Invest in technology

Mobilizing business is the key

- The bulk of mankind's execution capabilities resides with the businesses of the world
- Implementation of climate change mitigation wouldn't be possible without business moving proactively
- Competition is the key to fast technological advances

Taiwan's GHG Reduction Plans

- Set aggressive targets to reduce GHG emissions
 - > 2020 back to 2005 levels (peaking before 2020) ...
 - Institute the necessary laws, pricing policies, market mechanisms, and especially incentive policies to convert these targets to business opportunities

Build green energy industries

- > Photovoltaic and LED already world-class players
- Strategy to encompass offshore wind, smart grid infrastructure, green buildings and its assorted components, electric vehicles, biofuels, advanced energy storage, ultra-low-power electronic appliances ...
- Expand energy technology R&D investment substantially
 - ITRI to expand its industrialization-driven energy R&D efforts to close to 3,000 man-years (out of 6,000)
 - Launched major academic research program to build R&D excellence for the long haul

5

Sample Market Making Strategy: EU's Feed-in-Tariff (FIT) Systems

Source : Klein et al., 2006, Evaluation of different feed-in tariff design options", Fraunhofer Institute Systems Innovation Research (ISI) and Energy and Economics Group (EEG), funded by the Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), p87.

Energy Efficiency Best Practice: California

Residential electricity use per person -U.S. and California (kWh/yr)

Source: Chu, Stephen, Driving Global in Clean Energy, Clean Energy Ministerial, July 2010 7

Ultra-efficient Flat Panel TVs Power Consumption Down ~ 5 Times

Low-cost Non-vacuum Flexible CIGS

Core Technology

- New nano-metal oxide ink increase material utilization rate to 95%
- Uniform selenization process to modify the surface between buffer and absorber layers.

Targeting \$ 0.40 per watt module cost

3E Benefits

Easy to deploy

- \rightarrow High PCE* with light weight
- ➤Capable of high efficiency flexible module

Easy to maintain

- >Tolerance to defect
- >Tolerance to tough environment

Easy to expand market

- >Printed CIGS = low cost equipment
 >Flexible module = supreme applications
- Cd-free buffer = no environmental Issues

***PCE = Performance of cost to efficiency**

Safe Li-ion Battery Technology

Smart Green Buildings

A New Reaction Pathway that Increases Biofuel Yield by 50%

- Ethanol was called as "Half-Burn Fuel" since ~50% weight loss during fermentation due to CO₂ release
- Petro-based butanol dominates the market as solvent but not a renewable fuel
- ITRI's Carbon Loss-Free Pathway
 - Theoretical maximum carbon yield is 100%
 - 1.5X yield of traditional process

*(a) Nature, 2008, (b) Nature Chemical Biology 2011

Thank You