

Pathways for Transport in the Post 2012 Process

Advancing Methods and Models to Monitor, Report, and Verify GHG Emission Reductions from Transport NAMAs

Ramon J. Cruz, ITDP COP17, Durban, South Africa

December 1, 2011

Institute for Transportation

VEOLIA

RANSDEV

Nationally Appropriate Mitigation Actions (NAMAs) and their supporting pillars

GHG Analysis for Transport NAMAs Needs to integrate strategies at three different levels

Project & Portfolio

Need to take care to evaluate system-wide impacts, induced demand

Bus Rapid Transit BRT Light Rail Project

TEEMP

Plan & Region

Optimal scale to consider system impacts for metropolitan plans/programs

Urban Mobility Plans Non-motorized Mob. Plans

TEEMP CITY

National Level

Often best for evaluating large programs and system policies

National Policy Programs

ROADMAP

Importance of developing practical analysis tools

- Data is crucial for sound MRV NAMAs
- Good data collection practices will permit countries and regions to access climate finance and bilateral funding opportunities.
- If one lacks good data, it's OK using default data and appropriate policy-sensitive tools for decision making
- As sustainable mobility plans are implemented, agencies should invest in data collection for monitoring, verification, and analysis, which will lead to better inventories and improved projects and plans.

TEEMP Model :

Simple spreadsheet model to estimate GHG emissions and compare

project interventions to business-as-usual scenarios

Project market influence area defined internalized baseline

TEEMP: Project-by-Project Tools

- 1. Bike sharing
- 2. Bikeways
- 3. Pedestrian Facility Improvement
- 4. Bus Rapid Transit (BRT)
- 5. Light Rail Transit/Mass Rapid Transit
- 6. Roads Projects Expressways, Rural Roads and Urban Roads
- 7. Railways
- City Sketch Analysis and Other Strategies

 Commuter Strategies, Pricing Strategies, Eco-Driving, PAYD Insurance

1. Define the Baseline Scenario

2. Define the Project Scenario

3. View the Outputs

TEEMP: emissions savings Business-as-usual vs. Project Interventions

What is TEEMP City?

TEEMP City is being developed with the idea of providing a clear vision of a livable city, and as a guide to these cities to provide efficient, clean, comfortable and safe public transport.

•Flexible (bottom-up) tool to estimate emissions and emission reductions from urban mobility plans

Based on original TEEMP architecture to quantify:
Emissions ofCO2, NOx y PM
Fuel use by different modes
Fatalities in roads

•Methodology to assess the quality, complexity and completeness of urban mobility plans

Global ROADMAP for the Transport Sector

Back to Top

POLICY LEVERS

Select the levers to be included in the trajectory case.

Lever	AII	LDV	HDT	Other on- road	Rail	Aviation	Water
Fuel Economy Improvements							
Biofuels / Efficiency Improvements in Upstream Processes (non-electricity)							
Electrification / Grid decarbonization							
Mode shift	M						
Activity Reduction							
More stringent emission standards							

The model's geographic scope includes 16 individual countries and regions

- Includes data on vehicle stock and vehicle activity by mode
- Data on vehicle and Fuel technologies
- Comparison of GHG emissions: base case scenario vs. alternative scenario

Contains levers for vehicle activity assumptions including:

- Mode shift
- Fuel improvement due to reduction in urban traffic
- Reduction of average trip lengths due to better urban planning and design

ROADMAP - Scenario Results

Mexico Intervention Strategy Mode Share

Mexico Potential Freight VKT Reductions

Intervention HDTVKT due to Activity Reduction+ModeShift

Brazil Intervention Strategy Mode Share

Brazil Potential Freight VKT Reductions

Conclusions

- Lack of local models and data should not be barrier beginning development and implementation of transport NAMAs
- Sketch models can be used with preliminary baseline projections and data for initial mitigation estimation
- Investment in data collection & MRV capacity are vital for continued effective longer-term planning & program operations

THANKS!

Ramon J. Cruz, Climate Policy Manager rcruz@itdp.org

1210 18th Street NW, 3rd Floor Washington, DC 20036 USA <u>www.itdp.org</u>

Institute for Transportation & Development Policy