Mitigation in the energy supply sector

Findings from the IPCC Fourth Assessment Report

Bert Metz

Netherlands Environmental Assessment Agency Co-chairman IPCC Working Group III

IAEA side event COP 13, Bali, Indonesia, December 6, 2007

Warning

- IPCC does not make any recommendation
- It provides policy relevant information
- It does lay out options

World primary energy consumption by fuel type

Future energy supply

- Strong increase in energy demand projected (upto 100% by 2030)
- Increase in oil/gas price: both low and high carbon alternatives attractive
- Price volatility important barrier against investments
- Shortage of fossil fuel is not going to help to stabilise CO2 concentrations (IPCC TAR)

Mitigation efforts over the next two to three decades will have a large impact on opportunities to achieve lower stabilization levels

Stababilization level (ppm CO ₂ -eq)	Global Mean temperature increase at equilibrium (°C)	Year global CO ₂ needs to peak	Year global CO ₂ emissions back at 2000 level	Reduction in 2050 global CO ₂ emissions compared to 2000
445 – 490	2.0 - 2.4	2000 - 2015	2000- 2030	-85 to -50
490 - 535	2.4 - 2.8	2000 - 2020	2000- 2040	-60 to -30
535 - 590	2.8 - 3.2	2010 - 2030	2020- 2060	-30 to +5
590 - 710	3.2 - 4.0	2020 - 2060	2050-2100	+10 to +60
710 - 855	4.0 - 4.9	2050 - 2080		+25 to +85
855 - 1130	4.9 - 6.1	2060 - 2090		+90 to +140

Economic mitigation potential in 2030 could offset the projected growth of global emissions, or reduce emissions below current levels

All Sectors and Regions have potential to contribute to CC mitigation Changing energy source **Energy savings** GtCO₂-eq/yr 6 5 4 3 2 Non-OECD/EIT EIT 1-OECD World total 0 250 100 20 250 ,00 22 20 150 ,00 20 250 100 20 250 100 150 100 20 50 100 20 US\$/tCO2-eq Waste Energy supply Transport Buildings Industry Agriculture Forestry

Note: estimates are for 2030 and do not include non-technical options, such as lifestyle changes.

Costs of major electricity supply options

Table 4.7: The technical potential energy resource and fluxes available, potential associated carbon and projected costs (US\$ 2006) in 2030 for a range of energy resources and carriers.

		Approximate	Present energy	Projected costs in 2030		
Energy resources and carriers	Technical potential EJª	inherent carbon (GtC)	costs ^c US\$ (2005)	Investment US\$/W _e ^d	Generation US\$/MWh	Additional references
Oil	10,000-35,000 °	200-1300	~9/GJ ~50/bbl ~ 48/MW (h	n/a	50-100	Wall Street Journal, daily commodity prices
Natural gas	18,000-60,000	170-860	~5-7/GJ ~37/MWh	0.2-0.8	40-60 +CCS 60-90	EIA/DOE, 2006 IPCC, 2005
Coal	130,000	3500	~3-4.5/GJ ~20/MWh	0.4-1.4	40-55 +CCS 60-85	EIA/DOE, 2006 IPCC, 2005
Nuclear power	7400 (220,000) ^f	*b	10-120	1.5-3.0	25-75	IAEA, 2006 Figures 4.27, 4.28
Hydro > 10MW	1250	•	20-100/MWh	1.0-3.0	30-70	
Solar PV	40,000	•	250-1600/MWh	0.6-1.2	60-250	
Solar CSP	50	*	120-450/MWh	2.0-4.0	50-180	
Wind	15,000	•	40-90 MWh	0.4-1.2	30-80	
Geothermal	50	• \	40-100/MWh	/ 1.0-2.0	30-80	
Ocean	large	*	80-400/MWh /	?	70-200	
Biomass -	Modern 9	6000	30-120/MWh	0.4-1.2	30-100	
heat and power			8-12/GJ			
Biofuels	1.2	•	8-30/GJ	?	23-75 c/l	Chapter 5, Figure 5.9
Hydrogen carrier	0.1	?	50/GJ	?	?	US NAE, 2004

Electricity sector emissions, 2002 to 2030 (IEA/WEO 2004 baseline)

Potential emission reductions from additional electricity saving in Building sector at <US\$ 50 /t CO2

Potential emission reductions from additional electricity saving in the industrial sector at <US\$ 50 /t CO2

Potential emission reductions from additional improved generation plant efficiency and fuel switching at <US\$50 /tCO2

Potential emission reductions from additional hydro, wind, geothermal, bioenergy, solar at <US\$ 50 /tCO2

The share of renewables in the total electricity supply can rise from 18% in 2005 to 30 – 35% by 2030 (at carbon price < US\$50/tCO2eq).

Potential emission reductions from additional nuclear power at <US\$ 50 /tCO2

Economic mitigation potential of nuclear power

- Given costs relative to other supply options, nuclear power, which accounted for 16% of the electricity supply in 2005, can have an 18% share of the total electricity supply in 2030 at carbon prices up to 50 US\$/tCO2-eq,
- but safety, weapons proliferation and waste remain as constraints

Potential emission reductions from additional CCS in new coal and gas plants at <US\$ 50 /tCO2

Fossil fuel share of electricity generation without CCS drops to < 50% of total supply by 2030 (at carbon price < US\$50/tCO2eq).

Top-down models: changes in primary energy mix in 2030 and beyond

Figure 3.24: Primary energy mix for the years 2030 and 2100. Illustrative scenarios aim at stabilizing radiative forcing at low (3–3.6 W/m²) and intermediate levels (4.5 W/m²) respectively.

Note: BL= Baseline. For the corresponding contribution of individual mitigation measures in (in GtCO₂) see also Figure 3.23.

An effective carbon-price signal could realise significant mitigation potential in all sectors

- Policies that provide a real or implicit price of carbon could create incentives for producers and consumers to significantly invest in low-GHG products, technologies and processes.
- Such policies could include economic instruments, government funding and regulation
- For stabilisation at around 550 ppm CO2eq carbon prices should reach 20-80 US\$/tCO2eq by 2030 (5-65 if "induced technological change" happens) <> current EU-ETS price:~ \$25/t; CDM price \$ 5-15/t

Investments

- Energy infrastructure investment decisions, (20 trillion US\$ till 2030) will have long term impacts on GHG emissions.
- The widespread diffusion of low-carbon technologies may take many decades, even if early investments in these technologies are made attractive.
- Returning global energy-related CO2 emissions to 2005 levels by 2030 would require a large shift in the pattern of investment, although the net additional investment required ranges from negligible to 5-10%
- It is often more cost-effective to invest in end-use energy efficiency improvement than in increasing energy supply

The full WG III Report and the Synthesis Report can be downloaded from <u>www.mnp.nl/ipcc</u>

Further information: IPCC Working Group III Technical Support Unit at the Netherlands Environmental Assessment Agency: ipcc3tsu@mnp.nl

