

SYNERGIES BETWEEN MITIGATION AND ADAPTATION TO CLIMATE CHANGE: EXPERIENCE FROM KENYA Glwadys Aymone Gbetibouo University of Pretoria

on behalf of Barrack Okoba, Carla Roncoli, Claudia Ringler, and Mario Herrero

> Copenhagen, COP 15 December 11, 2009

OUTLINE

- 1. Impact of climate change on Kenya
- 2. Synergies between adaptation and mitigation
- 3. Farmer perceptions of adaptation and mitigation Preliminary results
- 4. Conclusions

WHY CLIMATE MATTERS FOR KENYA

Source: IFPRI

KENYA: TEMPERATURE ON THE RISE

Mostly:

- in the cold season
- for min night temps

KENYA: CHANGE IN PRECIPITATION Small increase expected in Dec-Jan

Region	Dec-Jan	Jun-Aug	
Sahara	Small decrease (5-20%)	Inconsistent	
West Africa	Inconsistent	Inconsistent	
East Africa	Small increase (5- 20%)	Inconsistent	
Southern Africa	Inconsistent	Large decrease (>20%)	

IMPACT OF CC ON MAIZE YIELDS Kenya

Source: Jones and Thornton

(2003)

IMPACT OF CC ON MAIZE YIELDS Kenya

IMPACT OF CC ON CHILD MALNUTRITION (%) Projected to 2025

SYNERGIES & TRADEOFFS

MITIGATION: POTENTIAL IN AGRICULTURE

Estimated total technical and economic mitigation potential (0-20\$/ton) on all agricultural land, incl. all management practices and all GHG

	Total Agric.	Mitigation Potential by 2030			
	Land (M ha)	Technical (t CO2e/ha/yr)	Technical (Mt CO2e / yr)	Economic at 0-20\$/ton CO2eq (Mt CO2e / yr)	
East Africa	364	1.10	400	109	
Central Africa	177	1.02	180	49	
North Africa	113	0.80	90	25	
South Africa	138	0.58	80	22	
West Africa	302	0.73	220	60	
Total	1093	0.89	970	265 (27%)	

• Largest potential for agricultural CF projects in East Africa (41%)

Note: Estimates calculated from data provided by Smith et al (2008) (for SRES scenario B1)

MITIGATION: POTENTIAL IN AGRICULTURE

Commodity	Smallholder Livestock- Maize Systems	Maize	Biofuels	Coffee	Tea	Sugar
Area available in ha (million)	3	1.6	Semi-arid: 0.9	0.15	0.15	0.14
GHG mitigation activities	SALM: Agronomy Nutrient mgmt Water mgmt Agroforestry Set aside land	Residue mgmt.	Jatropha 1) Fuel- switch 2) AR	1) Shade trees, multiple cropping 2) Mulching 3) Fertilizer use eff	Inter- croppin g no option in Kenya	1) No/ burning of residues 2) Mulching systems 3) Fertilizer related emissions
Existing extension service	-	-	-	+	++	+
Tech. GHG mitigation potential in t CO ₂ e/ha/y.	2 - 5	0.5	1) 1-12 2) 2.5-5.0 High bandwidth	3 – 8		7.8 in 6 years
Economic mit. potential	++	?	?	++	0	+

Source: Timm Tennigkeit

SYNERGIES BETWEEN ADAPTATION AND MITIGATION

- Positive correlation between soil carbon and crop yield → Agricultural practices that improve soil fertility and enhance carbon sequestration also improve yield
- Increased fertilizer application, ideally combining inorganic with organic soil fertility types
- Increased and more efficient agricultural water management (reduces CO₂ from fuel/electricity, conserves land)
- Agricultural R&D, advisory services, and information systems→ support both adaptation and mitigation

TRADEOFFS BETWEEN ADAPTATION AND MITIGATION

- Tradeoff between crop residues and animal feeds in parts of Kenya
- Lack of application of labor-intensive soil & water fertility management practices on marginal soils (too costly/risky)
- Increased fertilizer application (in conjunction with soil fertility management) reduces soil mining and supports mitigation and adaptation, over-fertilization increases GHG

Farmers Are Aware Of The Link Between Agriculture And Climate Change

We asked farmers:
"Are you aware of
the link between
agricultural
practices and
climate change"

"Which Agricultural Practices Can Help Reduce Climate Change?"

"What Have You Done In Response To Perceived Climate Change?"

"What Would You Like To Do In Response To Perceived Climate Change?"

"Why Are You Not Implementing Desired Adaptations?"

"Which Developments Do You Need Most Urgently?"

"Which Solutions are Most Effective and Desirable to Deal with CC Impacts? ?"

Irrigation technology/water infrastructure

Farmer organizations

Training, capacity building

Education

Credit/capital

Seed/seedlings provision

Mechanization of agriculture

Corruption eradication

Markets, market controls

Natural forest restoration

Moving from pastoralism to farming

"What are the causes of climate change?"

- Mitigation to climate change may yield substantial benefits for smallholder farmers in Kenya (US\$2.2 billion in East Africa) that can be used to support adaptation and development efforts
- Given the low price of carbon offsets (US\$5-20/ha) mitigation activities alone do not yield sufficient benefits: the latter need to be complemented by co-benefits from adaptation and increased productivity/profitability
- Therefore it is essential to focus on activities that advance all three areas: profitability, adaptation, and mitigation

- Changing crop varieties/types and planting dates are among the most common adaptive strategies at the farm level
- The main constraint to implementing other adaptions is lack of access to capital and credit (ex.: irrigation is widely desired but expensive to establish and operate)
- Some of the priorities for development identified by farmers (irrigation, extension, capacity building, etc.) will support the synergies of mitigation and adaptation to climate change

- Farmers are aware of the connection between agriculture and climate change and of the benefits of planting trees to mitigate climate change
- There is less awareness about the mitigation potential for soil and water conservation and integrated soil fertility management and their potential synergies with adaptation