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Climate change is one of the most serious challenges facing 
humanity, and extends far beyond the rise in global mean tem-
peratures. Regional manifestations of climate change, including 

changes in droughts, floods, storminess, wildfires and heat waves, will 
affect societies and ecosystems. Information about regional impacts is 
crucial to support planning in many economic sectors, including agri-
culture, energy and water resources. Despite their importance, reli-
able projections of regional climate change face ongoing challenges1.

Here we review recent advances in understanding regional cli-
mate change, offer a critical discussion of outstanding issues, and 
make recommendations for future progress. We start by highlighting 
robust regional climate change patterns and their physical underpin-
nings, with a focus on temperature, precipitation and atmospheric 
circulation. Next we discuss outstanding challenges, including those 
related to physical understanding, model biases and internal vari-
ability effects, all of which contribute to uncertainty in projected 
changes of regional climate and extreme events. We conclude with 
a perspective on emerging opportunities in regional climate change 
research, including efforts to better understand and quantify projec-
tions of extreme events enabled by increasing model resolution and 
ensemble size.

Mechanisms for regional climate change
Regional climate projections are often perceived as synonymous 
with downscaling, but a better understanding of the physical origins 
of regional changes is essential to achieve more reliable projections. 
Regional models and global climate models (GCMs) alike can aid 
this understanding. Here we use the term ‘regional’ in a broad sense, 
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Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate 
projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on pro-
jections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared 
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considering scales as large as whole continents and ocean basins 
(thousands of kilometres) or as small as a few hundred kilometres, 
limited by the resolution of GCMs and long historical observations. 
Regional models can achieve finer resolution than GCMs.

Climate anomalies are made up of a response to radiative changes 
and variability generated internally within the ocean–atmosphere–
land–cryosphere system. Projections rely on assumptions about 
future changes in greenhouse gases (GHGs), aerosols and land use. 
Radiative forcing will probably continue increasing for the rest of the 
century, although the rate of increase is uncertain. Over time, the 
forced response will strengthen, diminishing the relative contribution 
from internal variability. Unless aggressive mitigation policies curb 
GHG emissions, the forced response is expected to dominate regional 
temperature change by the end of the century2.

Uncertainty in regional climate projections arises from internal 
variability as well as differences in model structure and forcing sce-
nario, with the relative importance of these factors varying with time 
horizon3. This section highlights robust patterns of regional climate 
change, and the next section discusses uncertainties due to model 
biases and internal variability. GHG forcing uncertainty will not be 
addressed in detail, as at the regional scale it can be nearly eliminated 
simply by scaling with global mean temperature change. However, 
aerosols are an important regional-scale forcing, and their imprint on 
regional climate change patterns will be discussed.

Temperature. For timescales of a century and longer, the magni-
tude of global mean temperature change under any emissions sce-
nario is related to the equilibrium climate sensitivity (ECS)4 and the 
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rate of deep oceanic heat uptake, which determines how quickly 
ECS is approached. Different models produce different values of 
these key metrics. The ECS of a GCM can be approximated as the 
sum of albedo, water vapour, lapse rate and cloud feedbacks. Cloud 
feedback is the dominant source of model spread5. Such feedbacks 
are strongly related to regional phenomena, so that the global mean 
is determined by integrated regional-scale effects (for example, ice 
albedo feedback).

At continental scales, robust features of change in surface air 
temperature have been found in observations and model projec-
tions (Fig. 1a). Polar amplification is a hallmark of surface tempera-
ture change in the Northern Hemisphere. It is largely a consequence 
of sea ice and snow albedo feedbacks, although poleward energy 
transport and feedbacks from clouds and water vapour may also be 
important6,7. The ratio of land warming to ocean warming is found 
to be greater than unity across all scenarios and models for both 
transient and equilibrium warming, owing to differences in sur-
face sensible and latent heat fluxes, boundary layer lapse rate and 
relative humidity, and cloud cover8. Muted warming is found in the 
Southern Ocean where excess surface heat is mixed into the ocean 
interior more effectively9,10. A similar feature is found in the North 
Atlantic subpolar gyre. These large-scale features are amenable to 
‘pattern scaling’, where fixed patterns of surface temperature change 
are scaled by the global mean temperature response across scenarios 
and through time11.

Precipitation. Whereas surface temperatures rise everywhere in 
future projections, precipitation change is highly variable spatially 
in sign and amplitude, with a relatively small global mean change 
(Fig. 1). The fundamentally regional character of forced precipita-
tion change highlights the challenge for predicting precipitation.

In the absence of major circulation changes, atmospheric mois-
ture increases with warming, strengthening the climatological 
distribution of precipitation minus evaporation (P  –  E)12,13. This 
explains the general rainfall increase in summer monsoon regions14, 
for example. At high latitudes, precipitation increases as storms 
transport more moisture poleward15. Over tropical oceans, the wet-
gets-wetter pattern is realized in atmospheric models in the ideal-
ized case where sea surface warming is spatially uniform (Fig. 2a).

Spatial patterns of sea surface temperature (SST) changes affect 
tropical convection. Fast equatorial waves flatten horizontal temper-
ature gradients in the tropical free troposphere, so that convective 
instability, measured by the moist static energy difference between 
the surface and upper troposphere, largely follows the SST pattern. 
As a result, tropical rainfall change follows a warmer-gets-wetter 
pattern (that is, positive where the local warming exceeds the tropi-
cal average)16. Enhanced warming over the equatorial Pacific and 
Atlantic anchors a band of rainfall increase where rainfall is cur-
rently low (Figs 1b and 2b). Ocean–atmosphere feedback is impor-
tant in coupled SST–rainfall pattern formation. For example, muted 
surface warming in the tropical Southeast Pacific is associated with 
acceleration of the southeast trade winds, which suppresses the 
rainfall increase along the southeastward slanted rain band called 
the South Pacific Convergence Zone (Fig. 2)17. The equatorial peak 
in SST warming is a robust feature across models owing to reduced 
evaporative damping18. The ongoing decadal cooling of the equa-
torial Pacific19 is, however, a sober reminder of the difficulty in 
detecting anthropogenically forced ocean warming patterns amidst 
internal variability.

Competing effects of moisture and circulation change on P – E 
can be understood by decomposing the P – E response into a ther-
modynamic component due to moisture increase with no circula-
tion change, and a dynamic component due to circulation change 
with no moisture change. The thermodynamic component gives rise 
to the wet-gets-wetter effect, but overestimates it because of partial 
compensation by the tropical circulation slowdown15,20. Sea surface 
warming patterns induce atmospheric circulation change, so that 
the warmer-gets-wetter effect is part of the dynamic component. 
Although SST patterns do not change much through the year, the 
thermodynamic component strengthens in the rainy season, and 
wet regions in the rainy season tend to get wetter21.

In monsoon regions, precipitation is concentrated in the sum-
mer season. Summertime monsoon rains are projected to intensify 
because of moisture increase, a change especially pronounced for 
the Asian–Australian monsoons14. A robust shift in the seasonal 
cycle is apparent in GCMs, characterized by a delay in monsoon 
onset and an increase in precipitation later in the season22. The 
delay in onset is consistent with a vertical stability increase, simi-
lar to a developing El Niño event23. This effect is compensated by a 
later increase in moisture convergence24. Over tropical continents, 
remote oceanic influence on rainfall changes is also important25. 
Over the African Sahel, for example, precipitation change follows 
the SST difference between the neighbouring subtropical North 
Atlantic and global tropics26.

Relatively high consistency in rainfall change emerges over 
tropical oceans from model projections (Fig.  1b), but large inter-
model variability remains (Fig. 3a). Decomposition of intermodel 
variability shows that the dynamic component (due to uncertain-
ties in atmospheric circulation change) dominates the uncertainty 
(Fig. 3b). The intermodel variability in tropical circulation can be 
traced further to differences in sea surface warming patterns. For 
example, an anomalous interhemispheric Hadley cell tied to a 

a

b

(°C)

(mm d−1)
−2 −1 −0.1 0.1 0.2−0.5 −0.2 0 0.5 1 2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 3 4 5 7 9 11

Figure 1 | CMIP5 multimodel mean changes. a, Surface air temperature 
and b, precipitation under Representative Concentration Pathway 
(RCP) 4.5 for the period 2081–2100 expressed as anomalies from 
1986–2005, as the ensemble mean of 42 models available in CMIP5. 
Hatching indicates regions where the multimodel mean change is less 
than the natural variability (computed from 20-year averages taken 
from pre-industrial control experiments). Images generated using 
http://climexp.knmi.nl/plot_atlas_form.py.
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cross-equatorial SST gradient dominates the intermodel variability 
in the zonal mean. This displaces the band of increased rainfall into 
the anomalously warm hemisphere27. The SST pattern effect has also 
been identified in intermodel variability of rainfall change in the 
Sahel26 and Amazon28,29, though land surface feedback is also impor-
tant in these cases. In the tropics, the tight relationship between cir-
culation uncertainties and SST patterns points to the importance 
of ocean–atmosphere interaction. Ultimately, the coupled SST-
circulation uncertainty originates from parameterized physics such 
as convection, land surface processes and aerosol effects.

Circulation. As climate warms, atmospheric moisture con-
tent increases at a rate of 6–7% per degree of warming, set by the 
Clausius–Clapeyron equation. The global mean precipitation 
increase is much less (2–3% K–1) because it is constrained by tropo-
spheric radiative cooling13. The difference between these rates of 
increase is consistent with a general decrease in the tropical over-
turning circulation13. In climate model projections, the east–west 
Walker circulation shows such a robust slowdown30, but changes in 
the north–south Hadley circulation strength are more varied and 
depend on the cross-equatorial ocean warming gradient27. In addi-
tion, the Hadley circulation expands poleward31. What determines 
its poleward expansion has not been fully explained, but relates to 
the latitude at which the associated westerly flow becomes baro-
clinically unstable31. The expansion coincides with poleward shifts 
in arid zones, with important implications in sensitive regions (for 
example, the Mediterranean climate zones)32,33. It is also consistent 
with an intensification of summertime subtropical anticyclones34.

Aerosol forcing is an important driver of atmospheric circula-
tion change. Unlike GHGs, anthropogenic aerosols are geographi-
cally distributed because of their short atmospheric residence time 
(of the order of a week), with high concentrations in the source 
regions of southeastern Asia, Europe and the Americas. Because of 
their strong spatial gradients, anthropogenic aerosols induce atmos-
pheric circulation change more effectively than GHGs per unit radi-
ative forcing35. Larger in the Northern Hemisphere, aerosol forcing 
generates an anomalous Hadley circulation that displaces tropical 
rainfall into the relatively warm Southern Hemisphere36. A strik-
ing regional manifestation of this aerosol effect is the precipitation 
decline in the African Sahel from the 1950s to the 1980s37,38. Over 
the Asian monsoon region, model results show that aerosol-induced 
cooling drives a divergent circulation in the lower troposphere. This 
dominates over the thermodynamic effect of GHG-induced tem-
perature increase, causing monsoon rainfall to decrease over the 
twentieth century39.

Despite their distinct geographical distributions, aerosols and 
GHGs induce surprisingly similar patterns of SST and oceanic pre-
cipitation change40. Such robust macrostructures emerge despite 
large uncertainties in representing microphysical aerosol effects41. 
This is because the climate system adjusts to radiative forcing 
through common ocean–atmospheric feedbacks that imprint char-
acteristic patterns on the response. Because GHG and aerosol forc-
ings oppose one another, and because aerosols are more effective 
per unit forcing in inducing atmospheric circulation and precipita-
tion response, twentieth-century tropical rainfall change is relatively 
small and hard to detect. However, this may change in the future 
as anthropogenic aerosol loading is projected to decline, while the 
GHG signal is projected to continue growing.

In the Southern Hemisphere, GHG forcing causes the westerly 
wind jets and stormtracks to shift poleward in association with the 
increased Equator-to-pole temperature gradient in the upper tropo-
sphere42,43. Ozone depletion in the southern polar stratosphere also 
contributes to poleward movement of the westerly jets and changes in 
subtropical precipitation patterns44. Forced changes in the Northern 
Hemisphere westerly jets are less pronounced. Compared with the 
tropics, coupling between large-scale atmospheric circulation and 

the SST pattern is weak in the extratropics. Atmospheric internal 
variability is also large, making it difficult to isolate the forced 
response. Finally, nonlinear interactions between the mean flow 
and weather systems create blocking events, which are poorly 
understood and may be inadequately represented by models. 
Shepherd45 reviews midlatitude atmospheric dynamics related to 
climate change.

El Niño. The above discussion relates to changes in mean climate, 
but large-scale modes of internal variability greatly affect regional 
weather and climate over a broad temporal spectrum, from daily 
extremes to decadal changes. Their possible alteration in both 
frequency and amplitude under climate change is a key source of 
uncertainty at the regional scale.

In the tropics, El Niño–Southern Oscillation (ENSO) is the 
dominant source of fluctuations in present climate and is expected 
to remain so14. Despite common future changes in mean states 
potentially affecting ENSO growth (for example, equatorial trade 
wind weakening and shoaling of the thermocline30), climate mod-
els do not show any systematic change in the typical amplitude of 
east Pacific SST variations46,47. The spread among model responses 
is likely to be due to systematic errors in simulating present-day 

a

b

c

SUSI

SPSI

SPSI − SUSI

60° N

30° N

0°

30° S

60° S

60° N

30° N

0°

30° S

60° S

60° N

30° N

0°

30° S

60° S

−60 −40 −20 0 20 40 60 80 100 120 140

60° E 120° E 180° 120° W 60° W 0°

60° E 120° E 180° 120° W 60° W 0°

60° E 120° E 180° 120° W 60° W 0°

Figure 2 | Effect of ocean warming pattern on precipitation change. 
Precipitation change (colour shading, mm month–1) for: a, spatially uniform 
SST increase (SUSI) of 4 K; b, spatially patterned SST increase (SPSI); and 
c, the difference between the runs. SPSI is derived as the CMIP3 mean 
from the runs with 1% per year CO2 increase at the time of quadrupling. 
All the results are scaled to a tropical (25° S to 25° N) mean SST increase 
of 4 K, based on the ensemble average of 11 atmospheric GCMs available 
in CMIP5. Line contours are for climatological precipitation (150, 200, 
250 and 300 mm month–1 contours) in a, and for SST deviations from the 
tropical mean warming (0.4 K intervals; zero contour thickened) in b.
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ENSO48. In addition, there is a delicate balance between amplifying 
and decaying feedbacks in the ENSO cycle, and their relative 
modifications by climate change differ among models49,50. Low-
frequency ENSO modulation, independent of radiative forcing 
changes, also makes detection of the anthropogenic response a 
challenge51. Nevertheless, there is increasing evidence that ENSO 
properties besides SST amplitude will change robustly because of 
the patterned increase in the background SST. For instance, posi-
tive rainfall anomalies during ENSO warm phases over the central 
equatorial Pacific will intensify52,53 because locally enhanced surface 
warming reduces the barrier to atmospheric convection. In turn, 
more frequent extreme tropical rainfall events during El Niño may 
affect weather patterns worldwide via atmospheric teleconnections. 
Associated with the enhanced convective response over the eastern 
equatorial Pacific, the ENSO-forced Pacific North American pattern 
tends to intensify and shift eastward in a warmer climate14.

Extremes. Changes in temperature extremes often scale with 
changes in the mean54,55, indicating that local temperature variance 
has changed little throughout the globe56. Variance in individual 
climate realizations, however, may change under continued global 
warming, altering tails of probability distributions and frequencies of 
extreme events. Such projected changes include reduced wintertime 

mid- and high-latitude temperature variability owing to Arctic 
amplification57, and increased summertime temperature variability 
in some midlatitude regions owing to soil moisture feedback58.

Precipitation intensity is projected to increase globally. Water 
vapour increases contribute most strongly to these changes in the 
tropics, but atmospheric circulation changes also play a role in mid-
latitudes59. For example, the projected poleward shift of the storm 
tracks42 increases precipitation variance in some regions, exacerbat-
ing the risk of extremes, while decreasing it and alleviating the risk 
in other regions. On seasonal and interannual timescales, the robust 
projection of increased extreme El Niño frequency53 would alter 
extreme precipitation patterns linked to El Niño.

Tropical cyclones (TCs) are among the most destructive storms. 
Some key TC statistics, such as count and track density, are tied to 
large-scale environmental factors such as SST and vertical shear. 
Atmospheric models of resolution finer than 100 km show remark-
able skill in capturing this environmental control and simulat-
ing spatial and temporal variability of TCs60. In a warmer climate, 
global TC counts tend to decrease in GCMs, but intense storms 
may become more frequent, and TC rainfall is likely to intensify14,61. 
Studies projecting TC counts for individual basins show large vari-
ability among models, with SST change relative to the tropical mean 
warming accounting for much of this variability62,63. Because of 
the interhemispheric gradient in the SST increase, the TC count 
decrease is more pronounced in the Southern Hemisphere. The 
western Pacific is an exception because of strong remote SST effects, 
similar to what is found for ENSO-induced variability in TC gen-
esis63. Mid-tropospheric vertical velocity seems to be a robust pre-
dictor of basin count change, and is tied to the distribution of SST 
change. In addition to TC genesis, atmospheric circulation change 
impacts TC tracks, affecting the statistics of TC landfall64.

Challenges
For global-mean temperature projections, aerosol effects and cloud 
response are leading sources of uncertainty in radiative forcing and 
climate feedback, respectively2. For regional precipitation projec-
tions, we have shown that atmospheric circulation change is the 
major source of uncertainty (Supplementary Fig. S1). In the trop-
ics, the circulation is coupled with patterns of SST change, whereas 
in the extratropics, internal variability, random but organized into 
large-scale spatial patterns, exacerbates the circulation uncertainty.

The problem of regional climate change projections presents a 
range of challenges in terms of physical understanding, the obser-
vational record, climate models and the simulations that we per-
form with them. For example, what are the long-term observational 
trends, and what are their causes? How sensitive are regional cli-
mate change patterns to forcing types with different spatial distribu-
tions (GHGs versus aerosols)? How can we predict robust patterns 
of circulation and precipitation change? How do systematic errors 
in models affect the change patterns? What are the relative roles of 
internal variability and forced response? These questions pose new 
problems of ocean–atmosphere–land interactions. Understanding 
these interactions will allow us to reduce circulation uncertainty 
and build confidence in regional climate projections.

Observations. The quality of the observational record is an inher-
ent source of uncertainty, particularly pertaining to variability on 
decadal and longer timescales. Limited duration, incomplete spatial 
coverage and observational errors hinder our ability to characterize 
past changes and attribute them to anthropogenic forcing, and limit 
our ability to evaluate models65.

The tropical Pacific provides an example. Observational data 
sets disagree on the pattern of tropical Indo-Pacific SST change30,66. 
Spatial variations in SST trends (0.2  oC per century) are gener-
ally smaller than the global SST increase (0.6  oC per century), 
approaching observational errors and/or internal variability. These 
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Figure 3 | Intermodel spread of tropical precipitation change. 
a, Intermodel standard deviation of precipitation change σ(ΔP), along with 
climatological precipitation (150, 200, 250 and 300 mm month–1 contours). 
Precipitation change ΔP is given in mm month–1. Here ΔP = ΔPMME + ΔP, 
where the prime denotes the intermodel deviation from the multimodel 
ensemble (MME) mean. b, Standard deviation of spatial variations of ΔP 
within 30° S to 30° N (cross marks for individual models) as a measure of 
uncertainty, based on 70-year trends from 1% CO2 increase to quadrupling 
runs with 20 CMIP5 models. ΔP is decomposed into dynamic and 
thermodynamic components. The open circle denotes the ensemble mean, 
and the error bar one standard deviation. The dynamic component is highly 
variable among models and the largest uncertainty of rainfall projections. 
∆Pdyn = –(1/ρwg)∫0

(ps) ∆ω(∂q/∂P)dp and ∆Ptherm = –(1/ρwg)∫0
(ps) ω(∂∆q/∂P)dp, 

where p is pressure, q specific humidity, ω pressure velocity, ρw the density 
of water, g gravity, and the subscript s denotes surface value. All results 
are scaled to a tropical (25° S to 25° N) mean SST increase of 4 K in 
each model.
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spatial patterns drive atmospheric circulation changes, which in turn 
determine rainfall change patterns, as described above. Since all data-
sets are imperfect, seeking physical consistency among observations, 
for example between the tropical SST gradient and trade winds67, 
is a way to infer regional change patterns. The assimilation of data 
into models seeks such consistency, and proves effective for study-
ing variability on synoptic to decadal timescales. Reanalysis prod-
ucts, however, often are not appropriate for climate change studies67, 
as the quality and quantity of assimilated data change over time. A 
new generation of reanalysis suitable for climate change research is 
necessary, with use of coupled assimilation to improve consistency 
between ocean and atmospheric data.

Knowledge of the strengths and limitations of observational data 
sets is imperative for understanding past climate change, evaluat-
ing models and constraining projections. Community efforts to 
gather such knowledge from experienced data users and develop-
ers, and to share it with the wider climate community via ‘open-
source’ platforms (for example, https://climatedataguide.ucar.edu/) 
are essential68. To facilitate multimodel assessments, open-source 
assessment packages for climate models can be valuable resources. 
For example, the Climate Variability Diagnostics Package 

(http://www2.cesm.ucar.edu/working-groups/cvcwg/cvdp) provides 
key metrics of internal climate variability across models, with com-
parison to observations69. Ongoing efforts to produce a meaningful set 
of metrics on mean states, internal variability, and response to exter-
nal forcing are integral to advancing regional-scale model evaluation 
(http://www-metrics-panel.llnl.gov/wiki/FrontPage). The challenge 
is to convert insights from model evaluation to model improvements.

Impact of model errors on projections. Despite limitations of 
observational records, model biases are clearly evident, reducing 
confidence in regional projections. A common problem is exces-
sive summertime drying of soils in continental interiors, which 
may impact the land–sea warming ratio. Models simulating exces-
sive summer Arctic sea-ice may have too weak polar amplifica-
tion70. In the tropics, convection and rainfall are organized into 
east–west elongated bands called the intertropical convergence 
zone (ITCZ). A long-standing bias is the so-called ‘double’ ITCZ, 
referring to models’ failure to keep the ITCZ north of the Equator 
over the eastern Pacific and Atlantic. The double ITCZ bias is related 
to atmosphere–ocean coupling errors and is likely to affect rainfall 
change projections in the South Pacific Islands71 and elsewhere. 
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members, obtained by kernel density estimation. Deviations from the seasonal mean for the PDFs are obtained by subtracting the seasonal SAT anomaly 
from the 2001–2030 linear trend. d, As in c, but the thick red curve represents the 2016–2030 estimated PDF from the full ensemble by adopting the 
normal distribution with variance equal to (σ0

2 + σμ
2), where σ0 is the ensemble mean of the seasonal standard deviation from the 2016–2030 mean 

(0.85 °C) and σμ is the ensemble standard deviation of the 2016–2030 mean SAT anomalies (0.23 °C), indicating the widening impact of trend uncertainty 
on the ensemble PDF. The dashed red curve is the estimate derived directly from the histogram of the 30 ensemble members. The expected increase in 
hot extremes, depicted by the area in red shading, is due to both rightward shift of the PDF and the PDF broadening. The broadening is owing to trend 
uncertainty from natural variability and an increase in σ0 from 0.80 to 0.85 °C.
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The 30–60-day Madden–Julian Oscillation is another phenomenon 
poorly represented in many models72 and affecting confidence in 
projections of the South Asian monsoon, especially the subseasonal 
variability such as active/break cycles. Thus, despite a relatively 
robust understanding of tropical rainfall changes (see ‘Mechanisms 
for regional climate change’ above), the precise pattern in any par-
ticular model may not be credible.

Some biases persist over multiple model generations. It is impor-
tant to move beyond routine model evaluation (for example, root 
mean square errors) and develop innovative techniques to evalu-
ate processes impacting regional projections. The equatorial Pacific 
cold tongue, for example, results from interaction of trade winds 
and ocean upwelling (Bjerknes feedback). The cold tongue extends 
too far west in most models, skewing ENSO SST anomaly patterns 
and hence atmospheric teleconnections. The balance between the 
Bjerknes feedback and damping by upwelling and surface heat fluxes 
determines the magnitude and pattern of SST response to global 
warming16,18. This balance varies considerably among models. Most 
CMIP5 models project larger warming in the eastern than western 
equatorial Pacific14. But if the upwelling damping were stronger, 
this change in east–west gradient could reverse73, altering ENSO’s 
magnitude and spatial pattern49. Model evaluation should quantify 
these ocean–atmospheric feedbacks and their role in determining 
the spatial pattern of SST change. Such process-based model evalu-
ation challenges the observational record, as estimates of process-
level variables may only be available from field campaigns in sparse 
regions and times.

A further challenge is that model processes often involve complex 
interactions between resolved dynamics and multiple parameteriza-
tion schemes. It is not the best strategy to update parameterization 
schemes in isolation, as physical consistency of multiple processes is 
required. The ‘assembly’ stage of model development, often errone-
ously called ‘model tuning’, would benefit from tighter integration 
with process-based model evaluation. For example, long-standing 
tropical biases like the double ITCZ may be influenced by extra-
tropical errors, such as Southern Ocean clouds74 and the Atlantic 
meridional overturning circulation75.

Statistical methods have been suggested to adjust regional pro-
jections based on evaluation of model errors. Bayesian techniques 
use large model ensembles with perturbed parameters and weight 
each member according to its ability to reproduce observations76,77. 
Such approaches take into account uncertainties from multiple 
sources: models, observations and physical understanding. This 
allows us to move beyond simple ensemble mean and standard 
deviation approaches common in regional assessments (Fig.  1). 
The concept of ‘emergent constraints’ derives relationships between 

observable quantities and future projection variables in multimodel 
ensembles and uses the relationship to re-weight the multimodel 
projections in a similar way to the Bayesian approach70,78. Emergent 
constraints cannot deal with errors common to all models, high-
lighting the need for innovative complementary approaches to 
improving models.

Effects of internal variability. Any individual observed or simu-
lated climate trajectory contains contributions from internal vari-
ability and external forcing. The relative importance of these two 
contributions depends on temporal and spatial scale, and on the 
variable of interest3,79,80. In the extratropics, internal variability 
plays a dominant role in multidecadal atmospheric circulation 
changes, shaping regional patterns of temperature and precipita-
tion changes80. For example, large uncertainties in North American 
air temperature and precipitation trends projected over the next 
50 years stem mostly from internal circulation variability81. To the 
extent this internal variability is unpredictable, the resultant uncer-
tainty is irreducible. This ‘single realization effect’ is large enough to 
mask the forced regional response, presenting a major challenge for 
understanding and communication of regional climate change45,82.

Owing to internal variability, ensemble-mean regional climate 
trends may be misleading83,84. The top panels of Fig. 4 provide an 
example of a probabilistic representation of winter SAT trends at a 
grid point near Vienna, Austria, based on a 30-member initial condi-
tion ensemble81. The trend distribution is broad for 1976–2005; even 
with the forced response of 0.2 °C per decade, there is a 20% chance 
that the 30-year SAT trend is negative. As trend length increases, the 
radiatively forced trend increases while the trend distribution nar-
rows, indicating reduced importance of internal variability.

Internal variability has a particularly important impact on pro-
jected changes in extreme events, as illustrated in the bottom panels 
of Fig. 4 for summertime temperature at the same grid box from 
the 30-member ensemble. Trend uncertainty over the 2001–2030 
period results in substantial divergence among summertime tem-
perature distributions (Fig. 4c), with great increases in hot extremes 
for some realizations (for example, realization 2) but modest 
increases in others (for example, realization 1). Variance changes, 
depicted by changes in the width of the distributions, are modest 
in this example. However, uncertainty in temperature trend owing 
to decadal internal variability broadens the ensemble’s probability 
distribution function (Fig. 4d). This broadening indicates that inter-
nal variability averages out across realizations in climate means, 
but not in extremes. Thus decadal internal variability increases the 
probability of extreme events by widening the tails of the distribu-
tion. When coupled with potential socio-economic consequences, 
this would result in an increase of disaster risk. Whereas nature 
produces only one realization, risk assessment (for example, for 
insurance) must consider all possible outcomes based on large ini-
tial-condition ensembles from different models under a variety of 
forcing scenarios.

Changes in variance and skewness are also important for extreme 
events. The summertime temperature variance at the central 
European location in Fig. 4 increases by about 7% between 2001–2015 
and 2016–2030, consistent with the projected increase in European 
summertime temperature variability56, contributing to widening of 
the probability distribution. There is evidence that GCMs have con-
siderable errors in their simulation of internal variability3,85,86, but 
such evaluations are limited by an observational record that is too 
short to be representative of the true range of decadal variability87. 
This verification challenge is even greater for extreme events. Such 
events are rare by definition and therefore are even more affected 
by the observational record’s limitations55. Climate model improve-
ments, increased understanding of radiatively forced dynamical 
changes and large-ensemble simulations are required to alleviate the 
statistical limitations of small sample sizes in a single realization.

Regional climate change

Atmospheric circulation change

Regional forcing:
aerosols, land use...

Thermodynamic e�ect:
wet-gets-wetter...

Tropics:
air−sea coupling

Extratropics:
atmospheric internal variability

Figure 5 | Schematic of physical origins of regional climate change.
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Recommendations for research
We have identified key physical mechanisms for regional climate 
change (Fig.  5). The thermodynamic response to radiative forc-
ing is best understood and most robust across models. Examples 
include enhanced continental warming, polar amplification and 
the wet-gets-wetter effect. Decomposition of rainfall change into 
thermodynamic and dynamic components shows that atmos-
pheric circulation change is the main source of uncertainty 

in regional projections. Understanding the mechanisms for 
circulation change is essential to reduce this uncertainty, but 
they have only begun to be explored. More research is needed on 
how aerosol forcing can induce regional atmospheric circulation 
change (for example, the Asian summer monsoon). Recent studies 
suggest that despite large uncertainties in aerosol radiative forc-
ing, there are robust planetary-scale response patterns, mediated 
by ocean coupling.

With limited computational resources, it is critical to make optimal 
use of computing resources to advance regional climate change 
projections and to correctly assess uncertainties, reducing them 
when possible.

There are a number of demands on computer and human 
resources (see figure). A variety of independent models, differing 
significantly in their underlying physics and numerics, is required 
to provide assessments of the range of possible climate change. 
Models are also being developed that contain ever more complete 
representations of the climate system, including processes such as 
biogeochemical cycles, atmospheric chemistry and aerosols, clouds 
and convection, land processes and ice sheets. Process-oriented 
experiments are needed to better understand model behaviour, 
including internal variability and the response to various radiative 
forcing. The following factors increase demands on computational 
resources. First, internal variability has a very strong imprint on 
climate trends even on timescales as long as several decades and 
spatial scales as large as continents81. This calls for large ensemble 
simulations96. Second, when spatial resolution is high (25–50 km), 
many phenomena are reasonably well simulated in GCMs97, 
including tropical cyclones63,91 and extratropical weather regimes 
such as blocking98,99. This makes higher resolution desirable.

Regional models are useful to understand the role of small-
scale processes in shaping the regional climate response. These 
processes include orographic precipitation, snow-albedo feedback, 
land–sea breeze circulation systems, mesoscale convective systems, 
and ocean feedbacks on tropical cyclone intensity. Orography and 
coastline geography unresolved by global models can introduce 
credibility into regional patterns obtained with downscaling tech-
niques. Such smaller-scale mechanisms need to be carefully evalu-
ated to establish credibility100.

We recommend the following modelling strategies to achieve 
more reliable regional climate projections. These recommendations 
contribute to the ongoing planning for the next phase of CMIP and 
grand challenges of the World Climate Research Programme:
•	 To develop innovative experiments to shed light on atmospheric 

circulation response to radiative forcing, and to explore the 
sensitivity to ocean coupling, land surface processes and other 
important physical processes such as convection;

•	 To perform large ensemble simulations to isolate forced change 
and internal variability, and estimate the probability distribu-
tion of regional change;

•	 To exploit the emerging capability of high-resolution model-
ling to simulate important extreme phenomena such as tropi-
cal cyclones, and take advantage of resolved local geographical 
features such as the coastline and orography;

•	 To run the models for scenario projections in initialized mode 
and verify their subseasonal to interannual climate predictions, 
and to test the models’ skill in simulating important climate 
events such as mega droughts;

•	 To explore model development practices that effectively incor-
porate insights from process-based model evaluation and inte-
grate multiple coupled processes for overall physical consistency.

Box 1 | Modelling strategies.
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Competing priorities for running climate simulations. Many choices 
have to be made in designing an ensemble to produce information 
about past and future climates. These choices include: (i) ‘Variety’, the 
number of (pseudo-) independent simulators; (ii) ‘Complexity’, the 
number of physical, chemical and biological processes included in the 
simulator; (iii) ‘Resolution’,  the grid spacing; (iv) ‘Experiments’, how 
many different types of simulation are to be performed; (v) ‘Domain’, 
whether the simulation needs to be global and coupled, or regional 
atmosphere-only; (vi) ‘Ensemble’, the number of independent 
realizations; and (vii) ‘Length’ of the simulation. Different purposes 
and questions require different ensemble design strategies. For 
example, CMIP5 made a set of core choices (grey) to use many 
different global simulators, to run several different long experiments 
with medium complexity and resolution with small ensemble sizes. 
This core ensemble was designed to answer specific questions about 
how climate has changed in the recent past and may change in the 
future with different emission scenarios. If the question is to determine 
how the probabilities of certain outcomes may change in the near-
term (next 20 years) on regional scales, a different design is required 
(orange); or if the focus is on detailed downscaling using regional 
models for future time slices then a different set of decisions needs to 
be made (green). For detection and attribution (D&A) of past climatic 
changes, a large number of experiments are needed (blue). Note that 
some of these categories are serial, that is, more time is required to 
complete the simulations, and some are parallel, which means that 
additional processors could be used to perform the simulations in the 
same time.
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Our review suggests distinct regimes of atmospheric circulation 
change in the tropics versus the midlatitudes, calling for different 
approaches. In the tropics, internal variability on decadal timescales 
and longer is relatively small in comparison with the forced signal 
on the centennial horizon, and models now agree on some aspects 
of the pattern of rainfall change that are projected to emerge by the 
end of this century (for example, an increase in the equatorial Pacific 
and Atlantic, and a decrease in the southeastern tropical oceans). 
Precipitation and atmospheric circulation are tightly coupled with 
the SST change pattern in both the multimodel mean projection 
and intermodel variability. Elucidating this coupling, and develop-
ing observational constraints, can narrow uncertainties of regional 
projections in the tropics. An analogue may be the historical devel-
opment of ENSO prediction, where theory initially explained how 
coupled modes emerge from ocean–atmosphere feedback, ulti-
mately laying the foundation for seasonal climate prediction. The 
challenge is to extend this success to radiatively forced problems, 
and to design observing systems that monitor key processes associ-
ated with ongoing climate change.

In the midlatitudes, by contrast, coupling between large-scale 
atmospheric circulation and local SSTs is weak. Internal variability 
plays a much larger role in generating differences among regional-
scale projections. Nevertheless, the lack of a robust circulation 
response in midlatitudes in models does not preclude potential 
shifts in storm tracks or changes in blocking frequency that models 
cannot (yet) represent. Random internal variability and the non-
linear nature of the midlatitude circulation render regional climate 
projections inherently probabilistic.

We recommend a coordinated multimodel set of large initial-
condition ensembles to further regional climate change research 
(Box 1). First, such a set of experiments would quantify probabilities 
of changes in means and extremes across models, including not only 
structural uncertainty but also irreducible uncertainty due to inter-
nal variability. Quantification of changes in risks is necessary for 
insurance, and for infrastructure planning. To quantify probability 
distributions and occurrence of extremes, we need research into 
dynamical processes governing changes in higher-order moments 
such as variance and skewness. Second, the set of experiments 
would enable isolation of uncertainties due to internal variability 
from those due to model structure. Large ensembles also open new 
possibilities for studying radiatively forced changes in extratropical 
atmospheric circulation.

Computing advances have benefited climate modelling through 
enhanced complexity and increased resolution. A threshold has 
recently been crossed: at 50-km resolution, atmospheric models 
demonstrate marked skill in simulating TC statistics. This opens up 
new opportunities for studying climate change effects on TC vari-
ability, much as happened in the 1970s to 1980s, when explicit simu-
lations of extratropical cyclones vastly improved weather forecasts. 
High-resolution large-ensemble simulations could greatly advance 
our understanding of internal variability and forced change in TC 
metrics and processes, especially track density, landfall statistics 
and ocean feedback. Higher resolution also improves simulation 
of blocking events, a phenomenon linked to extreme weather in 
the extratropics.

Robust precipitation changes are projected over land: increases 
at high latitudes and in the Asian monsoon result from enhanced 
atmospheric moisture content, whereas decreases in the subtrop-
ics arise from Hadley cell expansion. The ocean warming pattern 
also changes atmospheric circulation over the Sahel and Amazon, 
although the robustness of these changes remains to be tested. 
In addition to such non-local atmospheric changes, improved 
understanding of land surface processes is key to more credible 
projections of human impacts58,88. For example, soil moisture and 
near-surface relative humidity are projected to decrease globally89, 
probably exacerbating drought when it does occur, and potentially 

increasing the frequency and intensity of heat waves. More realistic 
simulation of snow albedo feedback and snow processes would also 
reduce uncertainty surrounding continental warming, runoff tim-
ing and soil moisture at high latitudes90.

Agreement among models is an indicator of robust change, but 
should be viewed in the context of model biases and weak observa-
tional constraints on forced regional response. Evaluating the impact 
of common biases and ultimately reducing them is a grand chal-
lenge. The daily verification cycle has enabled weather forecasts to 
improve steadily by exposing model errors and observational needs. 
Similarly, seasonal prediction91 and attribution studies of extreme 
climate events92 can improve physical understanding and build 
model confidence. In this context, pacemaker experiments — that 
is, experiments with partial coupling that prescribes observed SST 
or wind evolution in tropical oceans19,93,94 — are useful to identify 
key drivers of regional change. Further innovations in experimental 
design are necessary to expose model problems. For example, flux-
adjusted models can be run in parallel with freely evolving models 
to evaluate effects of model biases on regional projections.

Regional climate projections are often taken as synonymous 
with downscaling global scenarios. The misconception is that with 
enhanced resolution, regional models will automatically solve the 
problem of producing regional climate projections. Regional climate 
models require lateral boundary conditions, which are subject to 
large uncertainties in atmospheric circulation change. Without care-
fully considering the uncertainty in lateral boundary conditions and 
model biases, downscaling global model projections adds essentially 
meaningless spatial detail1. Regional models may be useful to under-
stand physical processes in areas of complex coastlines and orog-
raphy, and may provide useful climate change impact information 
on the kilometre scales relevant to climate adaptation planning95. 
We suggest, however, that the current priority is to understand and 
reduce GCM uncertainties on regional scales (>100  km), which 
often dictate changes on finer scales. To achieve reliable regional cli-
mate projections, it is essential to understand the underlying physics, 
reduce model biases and adequately account for internal variability.
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