

Core business

- Core business: electricity
 - Generation
 - Transmission
 - Distribution
- Main markets:
 - South Africa
 - Southern African Development Community
 (SADC) countries

Southern African Grid map

353 097 km of power lines

Possible future grid system

Eskom power stations

SAPP partnerships

Imported hydroelectric power [potential]

- Mepanda Uncua [Mozambique] 2 500 MW
- Cahora Bassa North [Mozambique]
 - 1 400 MW
- Inga 3 [DRC] 3 500 MW
- Grand Inga [DRC] 40 000 MW
- Batoka Gorge [Zimbabwe] 600 MW
- Kafue Lower [Zambia] 450 MW
- Kariba North [Zambia] 350 MW

SAPP partnerships: gas options

- Kudu (Namibia)
- Potential for about 2 000 MW along South African West Coast
- Pande (Mozambique)
- Potential for about 1 000 MW along

KwaZulu-Natal coast

5 year Capacity expansion programme

- Five years capacity expansion at a projected cost of R97 billion
- Return to service of three mothballed power stations, i.e. Camden, Grootvlei and Komati
- Major capacity expansion
 - New coal-fired base-load station
 - Project Alpha
 - New pumped storage Project Hotel
 - Transmission lines
 - Open-cycle gas turbines Mossel Bay and Atlantis

History of Koeberg

- Late 60's idea of nuclear power emerged
- Early 70's decision to build a nuclear power station
- 1976 construction began
- 1984 unit 1 commissioned
- 1985 unit 2 commissioned
- 2004 celebrated 20 years of safe operation
 - -Jan H Smith award
 - -EdF award
- 2005 3rd in EdF radiation protection competition

Role of Koeberg

Geographically

- •1 500 km from main generators
- Anchors grid
- •Mitigates line losses these losses are as high as 400MW without Koeberg running
- •Mitigates consequences of absence

Resources

- Cost of coal transport
- •Water
- Environmental
- •6% of generation

Uranium fuel is cheaper than coal which is about R 1.5m/day extra

Technical information on Koeberg

- Koeberg's units were started in 1984/5
 - -40 years = 2024/5
 - -50 years = 2034/5 (Most likely)
 - -60 years = 2064/5
 - -Koeberg has successfully operated for 20/21 yrs
- The 2 Koeberg Units generate a total of 1800 MW
- 50% of the power to the Western Cape is transferred via overhead transmission lines this increases to 75% when one unit is off line.
- There is one unit off line for refueling and maintenance approximately every 16 18 months

Koeberg's economic impact

- Spends approximately R300m on suppliers and contractors each year.
- Employs 1100 staff and 350 contractors on a full-time basis
- During refuelling outages, an additional 700 contractors are employed
- More than 2000 families are wholly or partly dependent on Koeberg operations.

Koeberg's direct cash injection into the Western Cape economy exceeds R300m per year

Koeberg decommissioning plans

- The Koeberg units will be shut down in 2034/35.
- The two units will then be decommissioned according to an approved plan.
- The level of decommissioning will take into consideration the fact that the site will be retained for future nuclear.
- Eskom is making provision for the cost of decommissioning during the normal operation of Koeberg. The provision is regularly benchmarked against international norms.
- The rate and method of decommissioning depends on:
 - how long the spent fuel needs to be stored on site ie. Is there a national repository available?
 - when the site will be re-used?
 - radioactive decay to manageable levels to reduce costs.
- Decommissioning is costly because of the radiation. It is, however, fairly simple because it is a pure dismantling operation.

Summary of Nuclear Technology Options short listed by Eskom

- Various conventional nuclear power generating technologies exist for potential deployment in Eskom's present power generating fleet.
- The following table summarizes the results of the study conducted thus far.

Reactor Type	Technology	Plant Options	Vendor	Maturity	Core Damage` Frequency (CDF)	Last Plants Constructed
Light Water Reactor	Pressurized Water Reactor	RSA 1000	Areva NP (French)	Proven	1x10 ⁻⁵	Ling Ao 1 & 2, China (2002/3). Operating
		Koeberg	Areva NP (French)	Proven	2.5x10 ⁻⁵	More than 10 operating all over the world
		EPR	Areva NP (French)	Unproven	1x10 ⁻⁷	TVO, Finland Under construction
		AP1000	Westinghouse (USA)	Unproven	5x10 ⁻⁷	None operating or under construction
	Boiling Water Reactor	ABWR	General Electric (USA)	Proven	2x10 ⁻⁷	TEPCO I & 2, Japan. Operating
Heavy Water Reactor	CANDU	Candu-6	AECL (Canadian)	Proven	1x10 ⁻⁶	Quinshan 1 & 2, China (2002/03). Operating

Note: Core Damage Frequency (CDF) measures the level of safety (the lower the better)

New Convetional Nuclear in Eskom

