
GC IMPACT on TOURISM and WATER SUPPLY

Franz Prettenthaler, Nadja Vetters, Herbert Formayer, Clemens Habsburg-Lothringen, Patrick Haas

VCCT 2007 - Side Event

Impacts of climate change in the Alpine region and possible adaptation measures

VIENNA, AUGUST 27, 2007 JOANNEUM RESEARCH – Graz Institute of Technology and Regional Policy (InTeReg)

Motivation and Problem Statement

- Vulnerability Concept & Adaptation Policy
- Methods
- Results
 - Economic Cluster Analysis
 - Climatological Cluster Analysis
- Future Work/Outlook
- → Summary

MOTIVATION AND PROBLEM STATEMENT

JOANNEU

- Economic vulnerability to demand shocks arising from weather and climate variability
- Investigate how weather related demand shocks impact the vulnerable tourism sector and other related sectors
- Combination of climatological and economic research
- → Regional climate change → regional economic impacts
- Use the vulnerability concept for adaptation policy

Vulnerability Concept useful for adaptation policy?

Pragmatic working definition

JOANNEUN

CONCEPT OF REGIONAL ECONOMIC VULNERABILITY (Tourism)

EXPOSURE	SENSITIVITY	ADAPTIVE CAPACITY
 Relative Height (sea level) Precipitation regime 	 Employment concentration in the tourism sector Invested capital (proxy: Hotels, conveying capacity) 	 Economic diversity (HH-Index) Economic strength (equity capital ratio) Risk transfer mech. Technical adaptation options Alternative tourist attractions

Definition of indicators (vulnerability concept)

Economic Cluster Analysis

- groups of communities whose socio-economic and geographical characteristics point at similar vulnerability to external shocks on the tourism sector
- Focus 1st step: sensitivity + exposure-connected variables

Climatological Cluster Analysis

- Precipitation regions
- Focus 2nd step: exposure
- → 3rd step: include adaptation

30.08.2007

Cluster analysis – definition of indicators

variables utilized

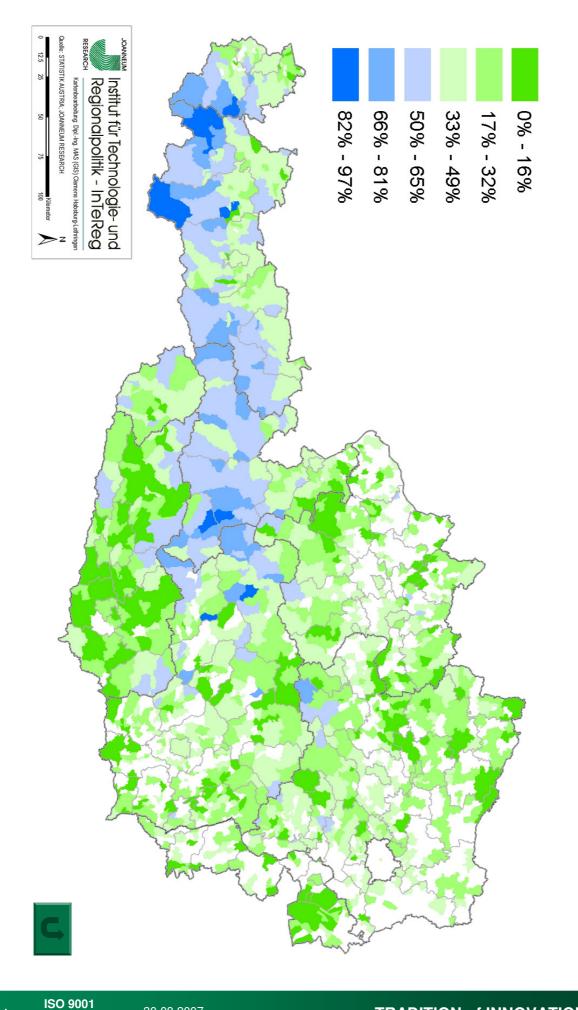
JOANNEUN

Share of overnight stays in the winter season Ø 2000-2005

Concentration of Employment in the tourism sector

Tourism density (overnight stays/inhabitant) Ø 2000-2005

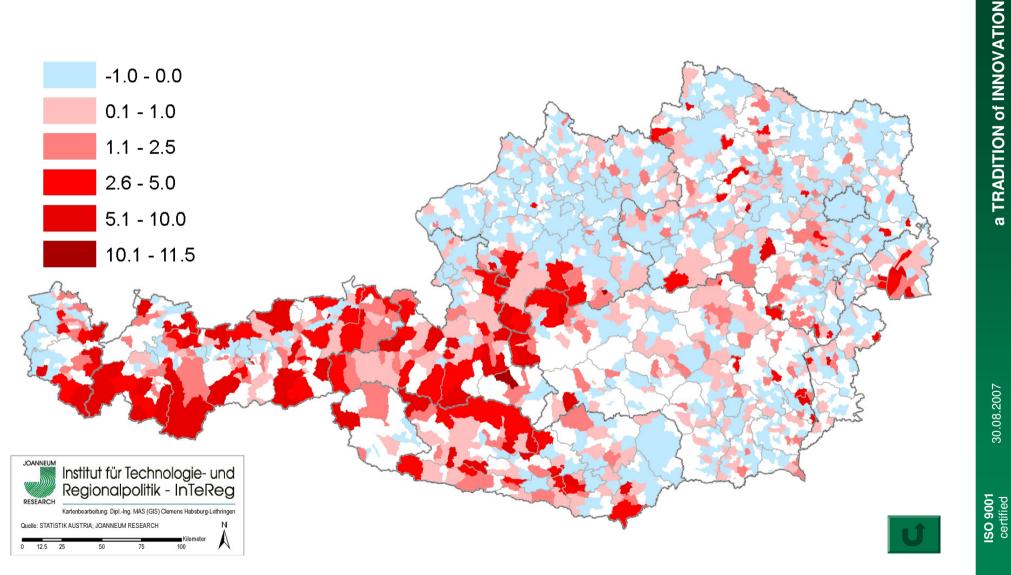
Highest elevation

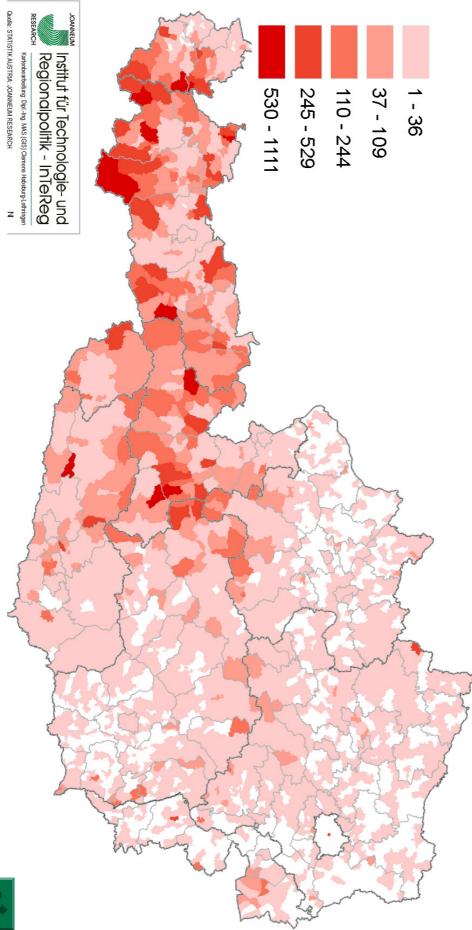

Max. conveying capacity

30.08.2007

f

Share of overnight stays in the winter season




certified

Concentration of Employment in the tourism sector

JOANNEUM

RESEARCH

JOANNEUM

Tourism density (overnight stays per inhabitant)

ISO 9001

certified

9

Maximum conveying capacity (pers./h)

JOANNEUM

RESEARCH

Cluster Analysis 1

- Focus on tourism in general (both seasons)
- Later step: find alternatives or possible new attractions

→ Cluster Analysis 2

- Focus on winter tourism
- Division in two groups of communities
- Criterion: ski-lift infrastructure
- Allows for more detailed information
- → Climatological Cluster Analysis
 - Focus on winter half-year

ISO 9001 certified

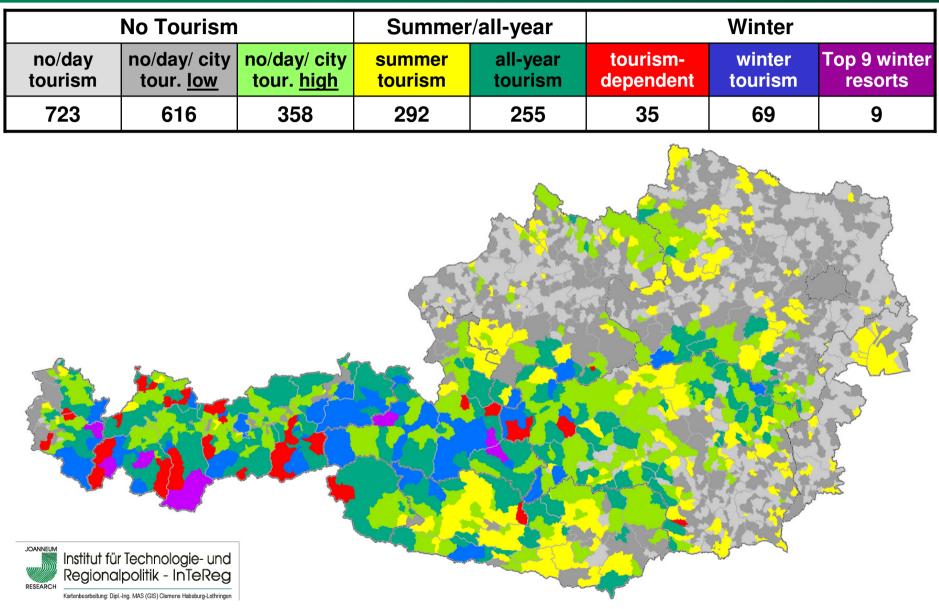
30.08.2007

2.375 Austrian communities

Cluster Analysis

Share of overnight stays in the winter season Ø 2000-2005

Concentration of Employment in the tourism sector


Tourism density (overnight stays per inhabitant) Ø 2000-2005

Highest elevation

Max. conveying capacity

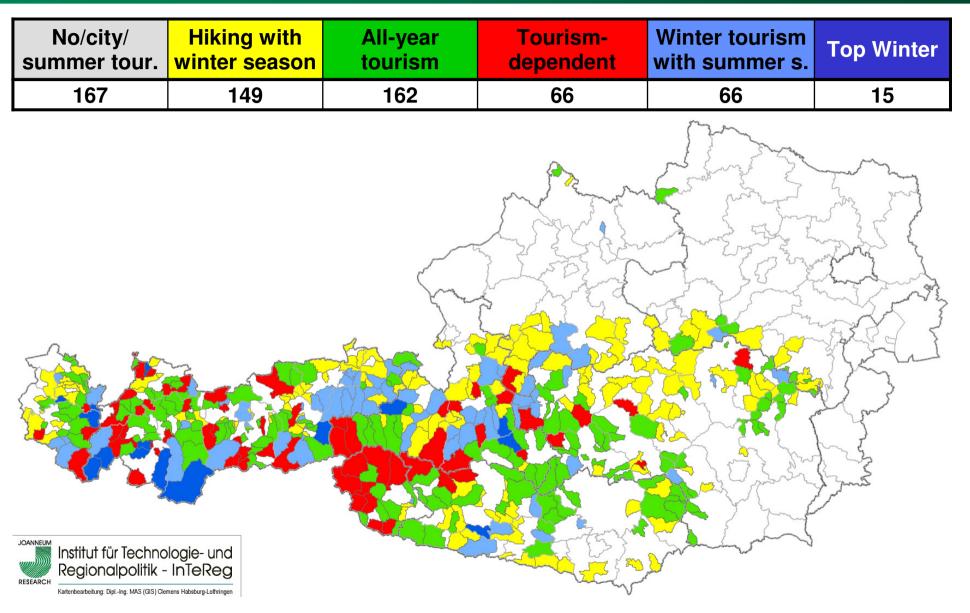
No Tourism			Summer	r∕all-year	Winter		
no/day tourism	no/day/ city tour. <u>low</u> alt.	no/day/ city tour. <u>high</u> alt.	summer tourism	all-year tourism	tourism- dependent	winter tourism	Top 9 winter resorts

Cluster Analysis 1

- Focus on tourism in general (both seasons)
- Later step: find alternatives or possible new attractions

Cluster Analysis 2

- Focus on winter tourism
- Division in two groups of communities
- Criterion: ski-lift infrastructure
- Allows for more detailed information
- → Climatological Cluster Analysis
 - Focus on winter half-year


EARCH CIUSIEI Analysis Z – IOCUS OII WIIILEI							
2.375 Austrian communities							
Winter sports infrastructure – ski-lifts							
Comm. with ski-lifts	Comm. without ski-lifts						
Cluster Analysis	Cluster Analysis						
Tourism density summer/winter (overnight stays per inhabitant) Ø 2000-2005	Tourism density summer/winter (over- night stays per inhabitant) Ø 2000-2005						
Concentration of Employment in tourism	Concentration of Employment in tourism						
Sea level + Difference of max./min. sea level	Sea level + Difference of max./min. sea level						
Max. conveying capacity cable cars/tow lifts							
Sea level upper/lower terminus							
No/city/ Hiking with with winter All-year Tourism- Winter Winter resorts	No tourism Summer/ all-year Summer Top summer higher alt.						

JOANNEUM

'////

RESI

n

Variables		all	No/city/ summer	Hiking + winter	All-year tourism	Tourism- depend.	Winter + summer	Top Winter
Tourism density WI σ	μ	13	2	9	17	98	57	515
	σ	102	7	21	29	66	81	246
	CV	784	322	227	167	68	142	48
	μ	11	4	15	19	70	39	163
	σ	46	11	26	20	44	45	95
	CV	404	290	175	107	62	115	58
Employment	μ	0,2	-0,2	0,3	0,9	5,2	1,4	7,7
	σ	3,6	1,9	1,8	2,9	2,8	2,8	1,2
	CV	-		-	-	-	-	-
Sea level	μ	770	540	643	913	1.134	808	1.295
	σ	268	165	134	174	202	181	189
	CV	35	30	21	19	18	22	15
max/min sea level	μ	1.181	492	1.387	1.374	1.644	1.457	1.465
	σ	585	283	337	472	487	503	444
	CV	50	57	24	34	30	35	30

Variables		all	No/city/ summer	Hiking + winter	All-year tourism	Tourism- depend.	Winter + summer	Top Winter
Max. conveying capacity cable cars	μ	2.445	56	361	924	3.091	12.032	21.143
	σ	6.255	255	910	1.985	3.914	9.044	16.240
	CV	256	454	252	215	127	75	77
	μ	2.966	904	2.063	2.457	3.963	9.026	9.317
Max. conveying capacity tow lifts	σ	3.670	704	2.005	1.948	2.747	5.108	7.886
	CV	124	78	97	79	69	57	85
Sea level lower terminus	μ	882	603	758	1.141	1.221	803	1.282
	σ	316	182	161	244	222	192	290
	CV	36	30	21	21	18	24	23
Sea level upper terminus	μ	1.309	721	1.062	1.495	1.837	2.137	2.343
	σ	665	237	312	370	452	964	461
	CV	51	33	29	25	25	45	20
Number of communities	•	625	167	149	162	66	66	15

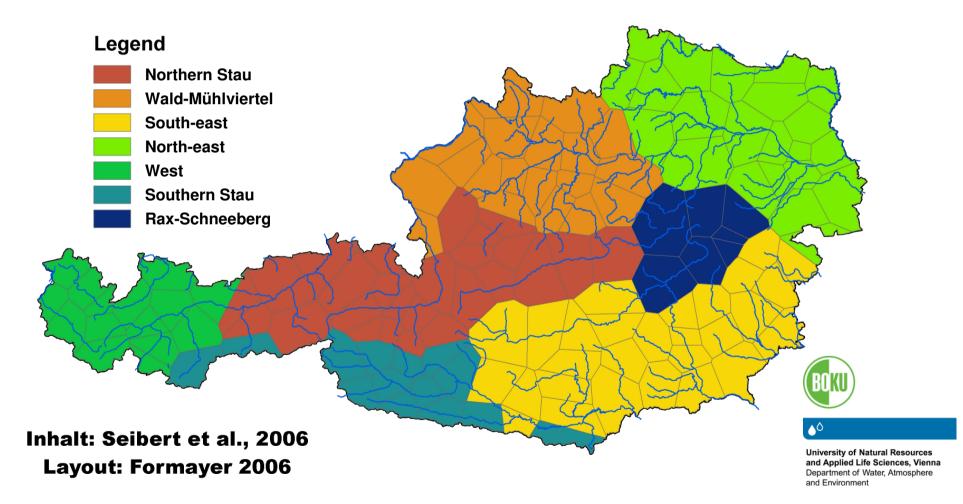
Cluster Analysis 1

- Focus on tourism in general (both seasons)
- Later step: find alternatives or possible new attractions

→ Cluster Analysis 2

- Focus on winter tourism
- Division in two groups of communities
- Criterion: ski-lift infrastructure
- Allows for more detailed information

Climatological Cluster Analysis


Focus on winter half-year

Climatological Cluster Analysis

JOANNEUM

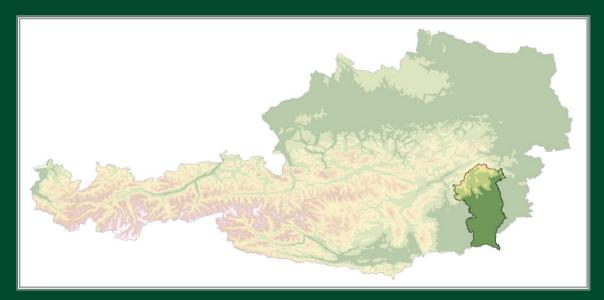
RESEARCH

Precipitation regions in the winter half-year in Austria

- → Selection of representative regions (communities)
- → Daily snow model, run at 3 different sea levels → situation of the skiing slopes
- Determine the associated shifts in demand
- Quantify the <u>direct</u> impacts on the regional tourism sector
- Quantify the <u>indirect</u> impacts on the economy of the entire region (Macroeconomic effects on level of federal states)
- Consider adaptation options
- → Focus on summer tourism

Determining winners & loosers (OECD 2007)

- Under present climate conditions, 609 out of the 666 (or 91%) Alpine ski areas in Austria, France, Germany, Italy, and Switzerland naturally snow-reliable.
- remaining 9% already operating under marginal conditions.
- → The number of naturally snow-reliable areas would drop to 500 under 1 °C, to 404 under 2 °C, and to 202 under a 4 °C warming of climate.
- → Rising of the snow line:
 - Temp. Increase of 2 °C to 2050: Snow reliability only above ~1.500m
 - T increase of 3 ℃ : ~1.800m

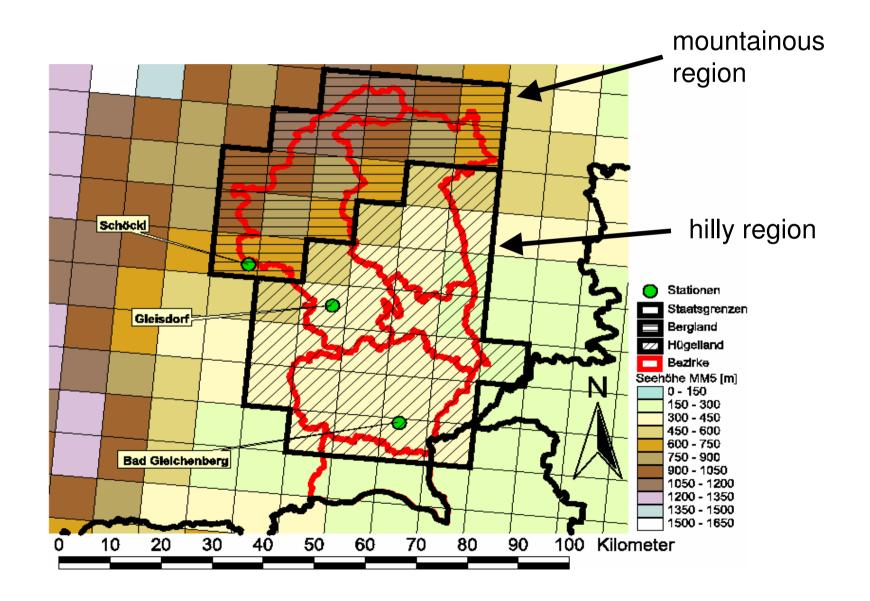

ISO 9001 certified

30.08.2007

...water supply

F. Prettenthaler^{2,4} I. Oberauner^{2,4}, A. Dalla-Via¹, A. Gobiet^{3,4}, R. Kurzmann², H. Truhetz^{3,4}, N. Vetters^{2,4}, G. Zakarias²

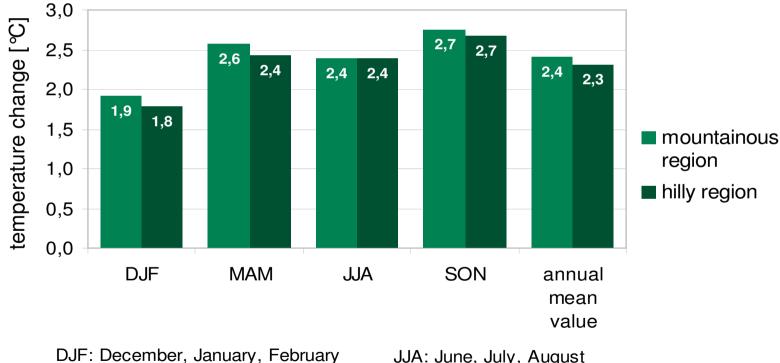
VCCT 2007 - Side Event Impacts of climate change in the Alpine region and possible adaptation measures



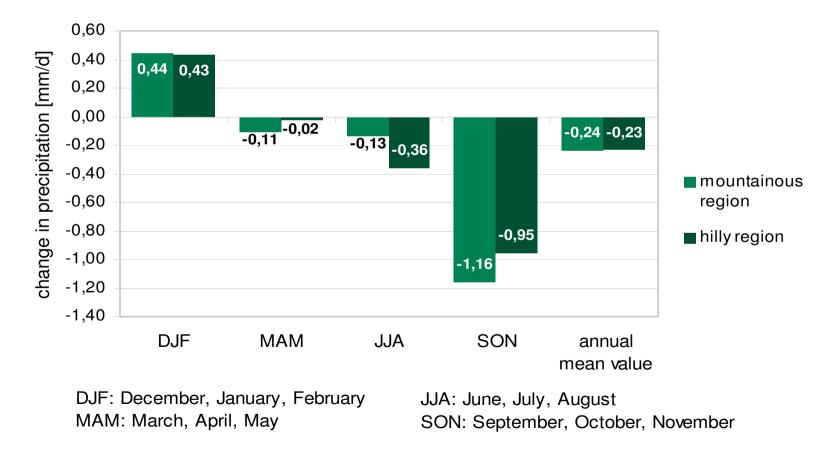
VIENNA, AUGUST 27, 2007

¹Institute of Water Resources Management, Joanneum Research Forschungsgesellschaft, Graz ²Institute of Technology and Regional Policy, Joanneum Research Forschungsgesellschaft, Graz ³Institute for Geophysics, Astrophysics, and Meteorology, University of Graz ⁴Wegener Centre for Climate and Global Change, University of Graz

- → Austria only uses 3% of its Freshwater ressources
- → There are regions suffering from water scarcity
- Some of which with high economic growth
- → Examined water intensive industries
- → Thorough hydrological modeling of the region
- Calculated macroeconomic losses from Water supply disruptions


Climate regions and stations – dynamic downscaling (MM5 – 10 km grid)

Climate change projection (I)


MAM: March, April, May

 Scenario on seasonal temperature change comparing 1981 to 1990 and 2041 to 2050

JJA: June, July, August SON: September, October, November Climate change projection (II)

Scenario on seasonal precipitation change comparing 1981 to 1990 and 2041 to 2050

Hydrological prospects

No. of drought periods will increase in future

Increasing pressure

- further decrease of mean groundwater tables of private and public wells
- further connections to municipal water supply
- rough expectations concerning additional peak demand: 200 l/s
- central Eastern Styria: relatively low mean groundwater tables and low permeability
 → relatively high pressure
- Unteres Murtal: higher mean groundwater tables and higher permeability \rightarrow relatively less pressure

Economic threats for Eastern Styria

→ Economic data on water intensive industries

• employees: 20 700

JOANNEU

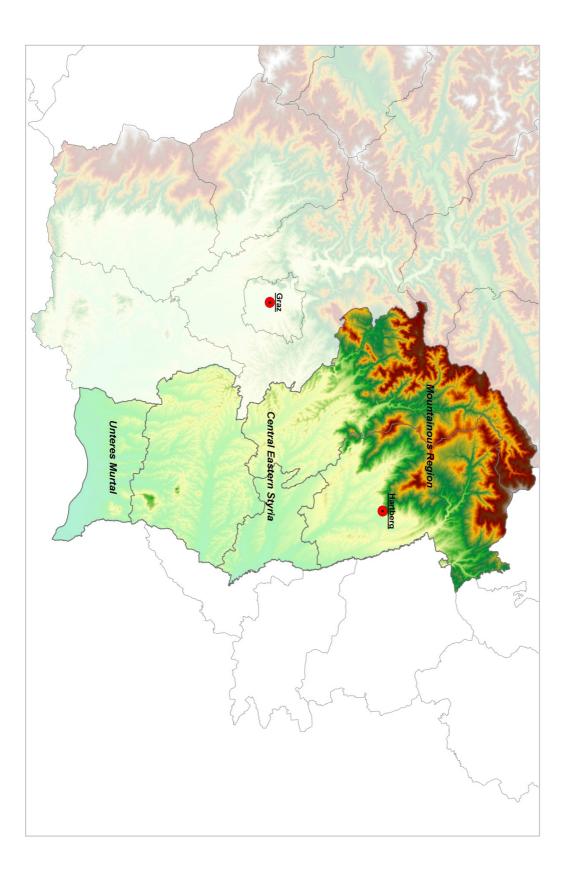
- annual production value: € 2.7 Billion
- annual gross value added: € 1 Billion

→ 2-week loss of production caused by water scarcity

- loss in production value: € 105 Million
- loss in gross value added: € 40 Million
- Most affected industries
 - metal industry (PV: € 21 M, GVA: € 7 M)
 - food production (PV: € 24 M, GVA: € 8 M)
 - tourism industry (PV: € 21 M, GVA: € 9 M)

Adaptive strategies on the supply-side

- connecting all regional pipe networks (risk pooling)
- investment in a pipeline that connects Graz (supplied by pipeline from abundant alpine springs) to Hartberg


Assessment of

- direct
- indirect
- induced

effects of the investment on the national economy

Assessment method

 MultiREG: multiregional and multisectoral econometric model

Regions in Eastern Styria

a TRADITION of INNOVATION

30.08.2007

Macroeconomic effects on the national economy of an investment in a regional pipe network and a pipeline

(Values in million Euro; sum of values within the considered time period from 2004 to 2008)

	Regional pipe network	Pipeline
Direct investment	47,3	13,1
Additional production value	84,8	23,1
Additional gross value added	46,8	12,7
Additional employment	810	210
Additional water capacity	not available	212 l/s

(loss of gross value added of water intensive industries for a 2 weeks breakdown = \in 40 Million)

30.08.2007

Demand-side adaptive strategies (I)

Assessed options

JOANNEUI

- expansive water price policy
- implementation of water saving technologies in households
- implementation of water saving technologies in hotels

Water saving technologies

- devices for showers
- toilettes
- water taps
- → Method used: cost efficiency analysis
- → Water price elasticity of demand:

$$\varepsilon_{p} = \frac{\% \varDelta Q}{\% \varDelta P} = -0,25$$

Demand-side adaptive strategies (II)

	Increase in price*	Water saving technologies in households*	Water saving technologies in hotels
Current water demand [m ³ /year]	9,215,000	9,215,000	850,000
Annual water savings [m³/year]	1,671,000	1,671,000	180,000
Annual water savings [%]	18	18	21
Needed water price increase [%]	73	-	-
Total costs [€]	-	3,500,000	1,950,000

*Comparison of demand-side strategies with the supply-side option of the pipeline (for a 25 percent load of the pipeline \approx 53 l/s = 1,671,000 m³/year)

34

- Comparing with supply-side adaptive strategies, demand-side options reveal to be insufficient
- Rough predictions of hydrologists about additional future water demand in times of peak load is about 200 l/s
 - →Demand-side options are a good contribution, but can not cover expected demands
 - →Realization of supply-side adaptive strategies necessary

ISO 9001 certified

30.08.2007