

Update on IEA Energy Technology G8 Activities

UNFCCC COP 12/MOP 2 Nairobi

Dr. Robert K. Dixon

Head, Energy Technology Policy Division International Energy Agency

© **OECD/IEA 2006**

Energy Technology Perspectives 2006

ETP 2006 provides part of IEA's "advice on scenarios and strategies" to G8 leaders

ETP 2006 presents a groundbreaking review of technologies across all sectors and assesses how they can make a difference.

Scenario Analysis

- Scenarios analysed:
 - Baseline Scenario
 - Accelerated Technology Scenarios (ACT)
 - TECH Plus scenario
- ACT and TECH Plus scenarios:
 - Analyse the impact from R&D, Demonstration and Deployment measures
 - ➤ Incentives equivalent to 25 \$/tonne CO₂ for low-carbon technologies implemented worldwide from 2030
 - Individual scenarios differ in terms of assumptions for key technology areas

Technology Assumptions

Scenario	Renewables	Nuclear	ccs	H ₂ fuel cells	Advanced biofuels	End-use efficiency
ACT Map	Relatively optimistic across all technology areas					2.0 % p.a. global improvement
ACT Low Renewables	Slower cost reductions					
ACT Low Nuclear		Lower public acceptance				
ACT No CCS			No CCS			
ACT Low Efficiency						1.7 % p.a. global improvement
TECH Plus	Stronger cost reductions	Stronger cost reductions & technology improvements		Break- through for FC	Stronger cost reductions & improved feedstock availability	

Global CO₂ Emissions 2003-2050 Baseline, ACT and TECH plus Scenarios

INTERNATIONAL ENERGY AGENCY

5

AGENCE INTERNATIONALE DE L'ENERGIE

World Liquid Fuel Supply by Scenario 2003-2050

Primary oil demand is below 2030 baseline level and is returned to about today's level in TECH Plus.

INTERNATIONAL ENERGY AGENCY

AGENCE INTERNATIONALE DE L'ENERGIE

Transport CO₂ Emissions by Scenario

Map Scenario: Two-thirds of CO₂ emissions reduction is from improved fuel efficiency and one-third from biofuels.

INTERNATIONAL ENERGY AGENCY

CO₂ Emissions Baseline and Map Scenarios

Map: OECD Emissions 32% below 2003 level, while emissions in Developing Countries are 65% higher.

Scenario Analysis Key Findings

- Most energy still comes from fossil fuels in 2050
- CO₂ emissions can be returned towards today's level by 2050
- Growth in oil and electricity demand can be halved
- Power generation can be substantially decarbonised by 2050
- De-carbonising transport will take longer but must be achieved in the second half of the century

Technology Implications

- A technology portfolio will be needed
- Improving energy efficiency is top priority!
- CCS is key for a sustainable energy future
- Other important technologies:
 - Renewables, including biofuels
 - Nuclear
 - Efficient use of natural gas
 - > In time and with effort, hydrogen and fuel cells

Policy Implications

- A more sustainable energy future is possible with known technology
- The costs are not out of reach
- Urgent action is needed in public and private sectors:
 - Overcome barriers for adoption of energy efficient technologies
 - Enhance R&D
 - Accelerate demonstration and deployment
 - Provide clear and predictable incentives
- Collaboration between developed & developing

Energy Indicators

"State-of-the art" data and analysis

- "30 years of energy use in IEA countries", published 2004
- Energy indicators on a country level
- So far energy use/value added
- Update of IEA's "30 Years" Indicator publication
- Development of more detailed indicators to address the G8 tasks on buildings, transport and industry

Energy Indicators: Collaboration with non-OECD countries

- Joint IEA/APEC workshop focused on non-OECD countries
- Planned project in the "Plus Five" countries together with the World Bank
- Expanded indicator database with key non-OECD countries
- Publication on trends in energy use and efficiency in OECD and key non-OECD countries

Networks of Expertise in Energy Technology (NEET)

NEET – Networks of Expertise in Energy Technology
The IEA's answer to the 2005 G8 request to enhance technology
collaboration with the "Plus-Five"

• NEET Goals:

- ◆Enhance international collaboration with Brazil, China, Mexico, India, South Africa and Russia through the IEA technology network and other networks
- Inventory of global collaborative energy efforts

http://www.iea.org/neet or contact Alexandra.Niez@iea.org

Carbon Capture and Storage: Technology and Policy

Breakdown of the contribution of CCS

Total contribution from CCS under ACT Map 6,486 MtCO₂

Carbon Capture & Storage – Legal Issues

- IEA is leading international work to advance CCS legal frameworks
- Key areas of focus:
 - Establishment of national legal & regulatory frameworks
 - Develop models for contractual issues (including intellectual property rights)
 - Define CCS within international marine environment protection instruments
 - Compile CCS incentives and interactions with emissions trading schemes/CDM
- Report early 2007

Thank you!

robert.dixon@iea.org

© OECD/IEA 2006