"Towards an Integrated Mitigation and Adaptation in agriculture" Side Event COP14, Poznan

AR AF AF EE AF

Interactions of mitigation and adaptation strategies in the agricultural sector

Yuri Okubo & Axel Michaelowa

Institute for Political Science University of Zurich

4th December, 2008

Outline

- Setting the Scene: why an integrated approach?
- GHG emissions from the agricultural sector and climate impact on the agricultural sector
- Mitigation and adaptation measures
- Potential synergies and trade-offs
- Benefits and barriers of an integrated approach

Setting the Scene: Rationale for integration

- There are adaptation projects that have an impact on GHG emissions and mitigation projects that have an impact on vulnerability
- Both are so far considered separately with an emphasis on mitigation
- Mitigation measures of agricultural sector and adaptation in general have been neglected

Integrated approach could provide incentives to:

- implement effective climate measures
- enhance mitigation and adaptation in the agricultural sector

GHG emissions from the agriculture sector

- Accounts for 13% of total global GHG emissions
- Agricultural CH₄ and N₂O emissions have increased nearly 17% between 1990 and 2005

World GHG emissions by sector in 2004 World historical emissions from agriculture

Source: Adapted from Barker et .al (2007)

02.12.2008 / 4

Climate change impact on agricultural sector

- Climate change is already affecting agricultural sector
- Asia: c.a. 2.5-10% decrease in crop yield in 2020s, and 5-30% decrease in 2050s compared with 1990 levels
- Europe: agricultural yields may increase in the north, but decrease in the south due to water stress

Unsuccessful adaptation would have global repercussions due to decreased food production

Mitigation measures

	Measures	Examples
Characteristics: •Reduced GHGs are nitrous oxide ,		Nitrogen fixers in rotation cycles
	· · ·	Soil water management improvements to irrigation and drainage
methane and CO ₂		Improved feeding practices
compared to other	manure management Grazing land	Improved storage and handling of manure management Alleviating nutrient deficiencies
		by fertilizer or organic amendments
	Bioenergy	Dedicated energy crops to replace fossil fuel use

Adaptation measures

Climate Change Impact	Examples
Changes in temperature	Adjustment of planting dates
Changes in temperature / precipitation	Cultivar and crop changes
Changes in temperature, Increased frequency and strength of storms	Crop relocation
Decreased precipitation, drought	Improved irrigation system
	Efficient water use technologies
	Diversifying income
	Accessible, efficient
Any climatic risk	markets for products and
	inputs for financial services
	including insurance

Characteristic •Vary with agricultural production systems location and climate scenarios

02.12.2008 / 7

Source: Easterling et.al (2007)

Potential Synergies

THE PARTY OF THE P

Mitigation measures	Positive effect on adaptation
Reforestation	Lower likelihood of flash floods
Return residue to fields to sequester carbon (No tillage agriculture)	Improved water holding capacity increases resilience to drought
Adaptation measures	Positive effect on mitigation
Drought resistant cultivars	Stable availability of biomass residues for bio power production
Planting of mangroves for coast protection	-Carbon sequestration -Reduction of risk of power plant outage due to flooding

Potential Trade-offs

COMPANY OF

Mitigation measures	Negative effect on adaptation
Increase in energy crops	Leads to deforestation and land slides
Hydropower development	Limited water resource for irrigation
Adaptation measures	Negative effect on mitigation
Rainfed to irrigated agriculture	Increase energy based GHG emissions for pumping
Change grassland to cropland	Increased emissions from soil

Benefits and barriers of an integrated approach

Benefits

- Climate policy makers can maximize benefit of their policy
- Reduce climate vulnerability of mitigation measures
- Reduce energy intensive adaptation measures

Barriers

- Synergies and trade-offs are location specific
- Lack of performance indicator(s) of adaptation measures
- Different temporal and spatial scale, involves different stakeholders and a different distribution of costs and benefits

Discussion Points

- How can we measure mitigation and adaptation effects simultaneously?
 - How can we agree on common indicator for adaptation effectiveness?
- How can we define policy instruments that consider both mitigation and adaptation?
- How can Europe and Asia learn from each other in this field?

Thank you for your attention!

CONTACT: okubo@pw.uzh.ch