Nuclear Power And Climate Change

CoP-12, Nairobi, Kenya• 7 November 2006

H-Holger Rogner

Head, Planning & Economic Studies Section (PESS)

Department of Nuclear Energy

Summary of nuclear power today:

- ➤ A proven technology that provides clean electricity at predictable and competitive costs
- ➤ More the 12,000 years of accumulated reactor experience
- Operation of nuclear installations have safety as highest priority
- Lessons learned from past mistakes or accidents have been acted on
- > The industry's safety record is second to none
- Nuclear takes full responsibility for all its waste

Global electricity generation in 2004: 17,400 TWh or 16% of global supply

Kyoto GHG Emissions, 1970 - 2004

Data sources: 1970-2000: EDGAR 3.2, EDGAR 3.2 FT 2000; 2001-2004: IEA, USGG, AFEAS, RAND, FAC

Sectoral breakdown of global GHG Emissions, 2004

Greenhouse Gas Emissions (gC_{eq} per kWh)

CO₂ Avoided by Hydro and Nuclear Energy (% of total CO₂ emissions from the energy sector)

Technology Options Towards a Sustainable Energy Future

- ► <u>Improved Energy Efficiency</u> throughout the energy system
- **► More Renewable Energy**
- Advanced Energy Technologies:
 - clean fossil fuel technologies including carbon capture & storage (CCS)
 - next generation nuclear technologies

All Demand And Supply Options Are Needed

Nuclear Power and Sustainable Energy Development

- ➤ There is no technology without risks, wastes or interaction with the environment.
- ➤ Therefore, it does not make sense to discuss a particular technology in isolation.
- ➤ Rather, one has to compare the performance of a particular technology with its alternatives on a life cycle (LCA) basis.
- Nuclear power compares favourably with alternatives

Externalities of Electricity Generating Technologies

Economics – Nuclear power

Advantages

- Nuclear power plants are cheap to operate
- Stable & predictable generating costs
- Long life time
- Supply security (insurance premium)
- Low external costs (so far no credit applied)

But...

- High upfront capital costs can be difficult to finance
- Sensitive to interest rates
- Long lead times (planning, construction, etc)
- Long payback periods
- Regulatory/policy risks

Investment Costs for 1,000 MWe

Typical Turn-key Costs

Range of Levelized Generating Costs of New Electricity Generating Capacities

Impact of a doubling of resource prices

Nuclear Power and Climate Change

- All credible scenarios of future energy demand and supply show that the more nuclear is used, the more GHG emissions are avoided
- > Still, there continue to be proposals to further exclude it from the menu of GHG mitigation options
- Countries with high nuclear shares have the lowest per capita GHG emissions

Conclusion

- Exclusion from climate change agreements of any technology with clear climate benefits limits options, flexibility and competitiveness
- Life cycle economics and environmental characteristics of nuclear power compare well with alternatives
- Climate change and sustainable development are best served by allowing all options to compete on a level playing field on the basis of cost-effectiveness, GHG reductions, environmental & health protection, security, and safety

