

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

COP 22 Side Event: Improving MRV for agricultural emission reductions in the livestock sector

7 November 2016, 16:45- 18:15 with cocktail following Mediterranean Room

Food and Agriculture Organization of the United Nations

ON AGRICULTURAL GREENHOUSE GASES

Part 1: Country experiences in improving MRV for mitigation in the livestock sector

Speaker 1: Walter Oyhantacabal, Ministry of Livestock, Agriculture and Fishery, Uruguay

CGIAR – CCAFS – ILRI COP22 Side event: November 7th, 2016

Walter Oyhantçabal

Director of the Sustainability and Climate Change Unit Ministry of Livestock, Agriculture and Fishery - Uruguay أالتير

Uruguay is a livestock country with an economy strongly based on the agricultural sector (70% of all exports).

75% of emissions in agriculture: main sources are...

Uruguay's iNDC: proposed mitigation targets in terms of emissions intensity in the beef sector (per kg beef) compared to 1990

	2030 vs. 1990 own effort	2030 vs 1990 with MOI	2010 vs 1990
CH ₄	33% less	46% less	23% less
N ₂ O	31% less	41% less	28% less

Q1: Uruguay experiences in improving activity data, emission factors and coordination to best capture mitigation impacts

National (digital) Livestock Information System

High quality livestock statistics system

100% traceability of the cattle herd, with electronic and visual tags

Annual electronic sword declararation by all farmers

- Stock: number of heads by category = AD dissagregated by small local áreas.
- Land use Diet, as basis for estimating sub-national EF

Emissions = AD x EF

Q2: What innovations have you used to get emission factors for low emissions production systems?

- Use of spatially disaggregated information on cattle herd by category and diet quality and composition.
- Tier 2 C-S EF for enteric fermentation including Tier 2 MCF
- Tier 2 N₂O from manure on grassland
- Use of FAOSTAT tools for QA/QC
- GLEAM model under calibration

Q3: How does Uruguay coordinates collection of data?

- Agriculture statistics are a responsibility of the Ministry of Agriculture and cover 200 local area units.
- Agriculture and LULUCF GHG inventories are compiled in our Ministry.
- EFs research is coordinated with the National Agricultural Research Institute and the Faculty of Agronomy
- This facilitates the convergence and the support to the inventory as the pillar for MRV of NDCs and NAMAs

REDUCING ENTERIC METHANE EMISSIONS INTENSITY THROUGH IMPROVED PRODUCTION EFFICIENCY AND PRODUTIVITY OF CATTLE IN BEEF PRODUCTION SYSTEMS IN URUGUAY

Speaker 2: Agripina Jenkins, Ministry of Agriculture and Livestock, Costa Rica

The experience of Costa Rica related to MRV and the livestock sector

Agripina Jenkins Rojas

Costa Rica: livestock policy

System Level

1. Gobernance of SINAMECC

ICAT y RdC – Definition of responsabilities–

2. Habilitant Framework

ICAT: Creation of a habilitant framework that facilitates the stablishment of interintitutional arragments for information.

3. Plataform

PMR: development of the plataform that also seeks the neccesity of carbon

What we need to capture mitigation?

> Activity data to capture mitigation

- We need information related to grass extension (by grass specie according to production system)
- Frequent data of cattle population
- Data related to use of nitrogen fertilizer
- Mitigation options

Innovations to get emission factors

- Static chambers to develop national emission factors (N2O)
 - Better grazing systems

Implementation of a technique (sulfur hexafluoride, known as SF6) to measure directly the enteric methane emitted by livestock

THANK YOU!

Agripina Jenkins Rojas

agripina.jenkins@gmail.com

Speaker 3: Zewdu Eshetu, Climate Science Center, Addis Ababa University, Ethiopia

COP 22 Side Event Improving MRV for Agricultural emission reduction in the livestock sector: Ethiopian Dairy Sector 07 Nov. 2016 Mediterranean Room Marrakech

Zewdu Eshetu CSC, AAU Carolyn Opio, Livestock Policy Officer, FAO

CSC

Agricultural GHG Research Center, New Zealand

Climate and Clean Air Coalition

CONTRIBUTION OF ETHIOPIAN DAIRY SECTOR TO EMISSIONS by production system: 161 MILLION TONNES CO2 eq. PER ANNUM

CONTRIBUTION OF ETHIOPIAN DAIRY SECTOR TO EMISSIONS: 161 MILLION TONNES CO2 eq. PER ANNUM

EFFICIENCY IN DAIRY SYSTEMS IN ETHIOPIA: EMISSION INTENSITY AND MILK YIELD

Medium-scale commercial Rural mixed crop-livestock Pastoral-agropastoral Small-scale commercial

SELECTED TECHNICAL MITIGATION INTERVENTIONS

Practice	Benefits
1. Supplementation with leguminous shrubs	Improved animal and herd health Higher conception rates Improved weaning weights
2. Use of urea-molasses multi-nutrient blocks (UMMB)	Improved nutrition Increased intake
3. Use of urea-treated crop residues	Improved growth rates
4. Supplementation with low-cost high protein/energy concentrates	Improved nutrition Improved cow condition Improved reproductive performance Higher conception rates
5. Disease control (trypanosomiasis)	Reduction in mortality and morbidity Increase in animal productivity Improvements in reproductive performance (fertility, age at first calving)
6. Use of sexed semen	Better management of heifer replacement Reduction in cost for heifer purchase Genetically superior females
7. Conventional artificial insemination using superior genetics	Improved conception rates, calf survival Increased weaning weights Increased final weights

Activity data sources

- Multistage activity data set of primary and secondary
 - Total cattle and dairy population by production system
 - Feed basket by production system
 - Parameters of feed materials
 - digestibility and crude proteins
 - Manure management system (percent of manure burned, stored, slurry, solid, dried, spread over fields etc.)
 - Cattle herd parameters by production system
 - Bull to cow ration, death rate, replacement, live weight, daily weight gains, etc.
- Sources of activity data: CSA, Published, experts opinion, measured
- Constraints lack of uniformity in manure, feed and cattle management

Emission factors

GHG = A X Ef

Emission factors are derived from multistage approach

- i. Methane production per milk cow production
- ii. Methane production per meat bull production

Constraints:

Methane production is affected by:

Livestock health Feed quality Management Milk productivity

- i. for low emissions production systems?
- Or problems that you face, e.g. we know from ILRI that IPCC efs probably don't reflect emissions of animals on submaintenance diets

Institutional coordination

THANK YOU

Speaker 4: Bess Tiesnamurti, Indonesian Center for Animal Husbandry Research and Development

Indonesia's Approach in Improving its Livestock Emissions Inventory

Dr. Bess Tiesnamurti

Director of Indonesian Centre for Animal Research and Development

Improving MRV for Agricultural Emission Reductions in the Livestock Sector 7 November 2016

II.Progress to date for Livestock Emission factor using Tier 2

Data used to get Emission factors Using Tier 2 Statistics Indonesia,

Trend of CH4 from enteric fermentation year 2006 to 2016 (Tier 1 vs Tier 2)

Mitigation technologies for enteric methane

- A. Feed Processing: Ensilage, ammoniation, fermentation
- B. Feed Supplement: Leguminouse leaves, balance ration
- C. Feed Additives:
 - 1. Saponin (Lerak /Sapindus lerak)
 - 2. Tannin (Acasia, Calliandra)
 - 3. Probiotic (Acetoanaerobium noterae and A. woodii)
 - 4. Complete rumen modifier (CRM)

Extract saponin from Sapindus rarak

NO	Animal	PARAMETER	Results
1	Beef cattle ¹⁾	Average daily gain	20 % 🅆
2	Sheep ²⁾	Average daily gain	40 – 44 %
		Feed Conversion Ratio	20 % 👔
		CH4 enteric emmited	31 % 👢

- 1) Astuti *et al.*, 2007.
- 2) Amlius, 2004

Estimation of methane reduction after tecnologies mitigation were applied.

III. COORDINATION AMONG AGENCIES

Coordination to collect data

Institutional Arrangement for GHG Inventory in Indonesia

THANK YOU FOR YOUR ATTENTION

Speaker 5: Alexandre Berndt, Brazilian Agriculture Research Corporation (EMBRAPA)

Improving MRV for agricultural emission reductions in the livestock sector: A perspective from Brazil

> Alexandre Berndt November 07, 2016

Activity data: Brazilian statistics IBGE – National Census.

Emission factors: IPCC Tier 2 + Local EF.

MCTI- National Inventories:

FIGURE I

Evolution of CO₂e emissions by different metrics, 1990 to 2010

Brazilian Total Emissions

Agriculture emissions

Coordinated efforts

- National Policy on Climate Change;
 - Brazilian Forum on Climate Change (FBMC);
 - Brazilian Research Network on Global Climate Change (*Rede CLIMA*);
- Ministry of Science, Technology and Innovation (MCTI)
- Sectoral Plan for the Mitigation and Adaptation to Climate Change for a Low Carbon Emission Agriculture (ABC Plan);
 - Special line of credit; Financial support for mitigation actions;

► ABC PLATFORM;

- Converge data on GHG emissions from Agriculture;
- Estimate the overall impact of the ABC PLAN
- Global Environment Facility (GEF);
- United Nations
 Development
 Programme (UNDP)

Motivation to measure GHG:

• INDC* presented at COP21 in Paris - Brazilian target for GHG reduction

À SEMELHANÇA DE OUTRAS INICIATIVAS, O IES-BRASIL CONCLUI:

*Intended Nationally Determined Contribution

Thank you! alexandre.berndt@embrapa.br

Brazilian Agricultural Research Corporation Ministry of Agriculture, Livestock and Food Supply

Part 1: Clarifying questions

Part 2: Chat show with audience and country panelists: moderated questions and discussion

RESEARCH PROGRAM ON Climate Change, Agriculture and Food Security

More information:

https://ccafs.cgiar.org/themes/low-emissions-agriculture

Food and Agriculture Organization of the United Nations

ON AGRICULTURAL GREENHOUSE GASES