

The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation

UN Climate Change Conference June 2011 Bonn, Germany, 7 June 2011 Ottmar Edenhofer, Co-Chair IPCC Working Group III

Special Report on Renewable Energy Sources and Climate Change Mitigation

1. Renewable Energy and Climate Change	Introductory Chapter				
2. Bioenergy					
3. Direct Solar Energy					
4. Geothermal Energy	Tachnology Chapters				
5. Hydropower	Technology Chapters				
6. Ocean Energy					
7. Wind Energy					
8. Integration of Renewable Energy into Present and Future Energy Systems					
9. Renewable Energy in the Context of Sustainable Development					
10. Mitigation Potential and Costs	Integrative Chapters				
11. Policy, Financing and Implementation					

Demand for energy services is increasing.

GHG emissions resulting from the provision of energy services contribute significantly to the increase in atmospheric GHG concentrations.

Annual change in global energy-related CO₂ emissions

Replacing fossil fuels with RE technologies lowers carbon intensity, while improved energy efficiency can lower energy intensity.

Potential emissions from remaining fossil resources could result in GHG concentration levels far above 600ppm.

The current global energy system is dominated by fossil fuels.

Shares of energy sources in total global primary energy supply in 2008

RE growth has been increasing rapidly in recent years.

140 GW of new RE power plant capacity was built in 2008-2009.

This equals 47% of all power plants built during that period.

The technical potential of renewable energy technologies to supply energy services exceeds current demands.

Range of Estimates of Global Technical Potentials

Max (in EJ/yr)	1109	52	331	580	312	500	49837
Min (in EJ/yr)	118	50	7	85	10	50	1575

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.

Notes: Medium values are shown for the following subcategories, sorted in the order as they appear in the respective ranges (from left to right):

Electricity	Heat	Transport Fuels
 Biomass: 1. Cofiring 2. Small scale combined heat and power, CHP (Gasification internal combustion engine) 3. Direct dedicated stoker & CHP 4. Small scale CHP (steam turbine) 5. Small scale CHP (organic Rankine cycle) 	 Biomass Heat: 1. Municipal solid waste based CHP 2. Anaerobic digestion based CHP 3. Steam turbine CHP 4. Domestic pellet heating system Solar Thermal Heat: 1. Domestic hot water systems in China 	Biofuels: 1. Corn ethanol 2. Soy biodiesel 3. Wheat ethanol 4. Sugarcane ethanol 5. Palm oil biodiesel
Solar Electricity: 1. Concentrating solar power 2. Utility-scale PV (1-axis and fixed tilt) 3. Commercial rooftop PV 4. Residential rooftop PV Geothermal Electricity:	2. Water and space heating Geothermal Heat: 1. Greenhouses 2. Uncovered aquaculture ponds 3. District heating 4. Geothermal heat pumps	
1. Condensing flash plant 2. Binary cycle plant	5. Geothermal building heating	
Hydropower: 1. All types		
Ocean Electricity: 1. Tidal barrage		
Wind Electricity: 1. Onshore 2. Offshore		

The lower range of the levelized cost of energy for each RE technology is based on a combination of the most favourable input-values, whereas the upper range is based on a combination of the least favourable input values. Reference ranges in the figure background for non-renewable electricity options are indicative of the levelized cost of centralized non-renewable electricity generation. Reference ranges for heat are indicative of recent costs for oil and gas based heat supply options. Reference ranges for transport fuels are based on recent crude oil spot prices of USD 40 to 130/barrel and corresponding diesel and gasoline costs, excluding taxes.

Technical Advancements: For instance growth in size of typical commercial wind turbines.

RE costs have declined in the past and further declines can be expected in the future.

Integration characteristics for a selection of RE electricity generation technologies

Technology		Plant size range	Variability: Characteristic time scales for power system operation	Dispatchability	Geographical diversity potential	Predictability	Capacity factor range	Capacity credit range	Active power, frequency control	Voltage, reactive power control
		(MW)	Time scale	See legend	See legend	See legend	%	%	See legend	See legend
Bioenergy		0.1–100	Seasons (depending on biomass availability)	+++	+	++	50-90	Similar to thermal and CHP	++	++
Direct solar	PV	0.004– 100 modular	Minutes to years	+	++	+	12–27	<25-75	+	+
energy	CSP with thermal storage*	50-250	Hours to years	++	+**	++	35–42	90	++	++
Geothermal end	ergy	2-100	Years	+++	N/A	++	60–90	Similar to thermal	++	++
Hydropower	Run of river	0.1- 1,500	Hours to years	++	+	++	20-95	0-90	++	++
	Reservoir	1-20,000	Days to years	+++	+	++	30–60	Similar to thermal	++	++
	Tidal range	0.1-300	Hours to days	+	+	++	22.5-28.5	<10	++	++
Ocean energy	Tidal current	1-200	Hours to days	+	+	++	19–60	10–20	+	++
	Wave	1-200	Minutes to years	+	++	+	22-31	16	+	+
Wind energy		5–300	Minutes to years	+	++	+	20—40 onshore, 30— 45 offshore	5–40	+	++

* Assuming CSP system with 6 hours of thermal storage in US Southwest.

** In areas with Direct Normal Irradiation (DNI) > 2,000 kWh/m2/yr (7,200 MJ/m2/yr)

Capacity credit is an indicator for the reliability of a generation type to be available during peak demand hours.

Technology			Capacity credit range		
		[]	%		
Bioenergy			Similar to thermal and CHP		
Direct solar energy	PV	[]	<25-75		
	CSP with thermal storage*	[]	90		
Geothermal energy			Similar to thermal		
Hydropower	Run of river	[]	0–90		
	Reservoir	[]	Similar to thermal		
Ocean energy	Tidal range	[]	<10		
	Tidal current	[]	10-20		
	Wave	[]	16		
Wind energy			5-40		

If a type of generation has a low capacity credit,

the available output tends to be low during high demand periods.

Few, if any, fundamental technical limits exist to the integration of a majority share of RE, but advancements in several areas are needed.

- Transmission and distribution infrastructure
- Generation flexibility
- Energy storage technologies
- Demand side management
- Improved forecasting and operational planning methods

An integrated RE-based energy plant in Lillestrøm, Norway, supplying commercial and domestic buildings

Lifecycle GHG emissions of RE technologies are, in general, considerably lower than those of fossil fuel options.

GHG emissions from modern bioenergy chains compared to fossil fuel energy systems, excluding land-use change effects.

Land-use change and bioenergy

- The positive greenhouse gas balance of biofuels can be affected by direct and indirect land-use changes.
- Proper governance of land use, zoning, and choice of biomass production systems are key challenges for policy makers

RE deployment increases in scenarios with lower greenhouse gas concentration stabilization levels.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

Global RE primary energy supply from 164 long-term scenarios versus fossil and industrial CO₂ emissions.

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

RE-specific policies and RE targets 2011

Conclusion (I)

- High deployment rates are consistent with increasing energy access for the world's poor population, improved security for energy supply and human well-being
- Renewables have exhibited technological progress which led to decreasing costs
- The costs of integration in a existing energy system are not quantified yet.
- Climate and renewable energy policies can be designed in a consistent way vernmental panel on climate change

Conclusion (II): Dealing with unknown unknowns

- The existing scientific knowledge is significant and can already facilitate the decision-making process.
- The report has identified the most important known unknowns (e.g. future cost and timing).
- However, the unknown unknowns require the flexibility to learn from experience and to adapt to inconvenient and convenient experiences.

