

Infrastructure Climate Risk: Strategies and Tools

Darrel Danyluk, FEC, P. Eng.

Vice-President, World Federation of Engineering Organizations
Chair, Committee on Engineering and the Environment

May 17, 2012

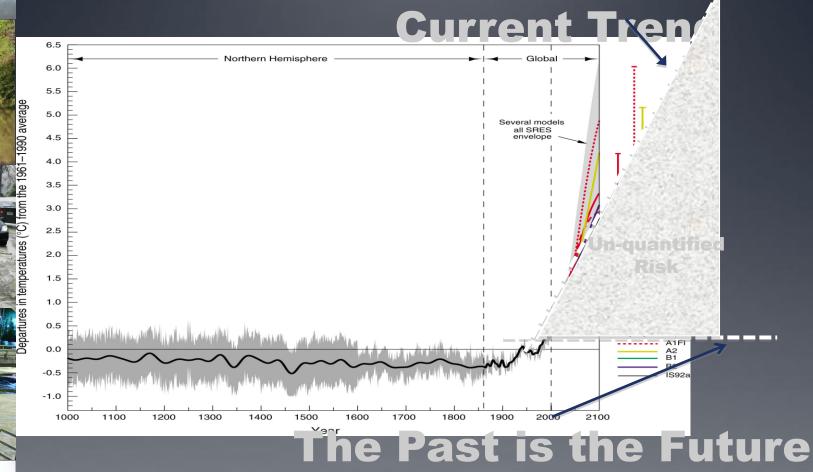
United Nations Framework Convention on Climate Change – Meeting SB 36 Bonn, Germany May 14-25, 2012

Accounting for climate change in civil infrastructure

- Low levels of awareness (this is changing)
- Gap between climate science and local planning (this is improving)
- Uncertainties affect willingness to take action
- Available tools/initiatives have focused on mitigation through GHG reduction (but this is evolving)
- Limited examples of comprehensive adaptation strategies and tools (but this is changing)
- Competing priorities and no sense of urgency

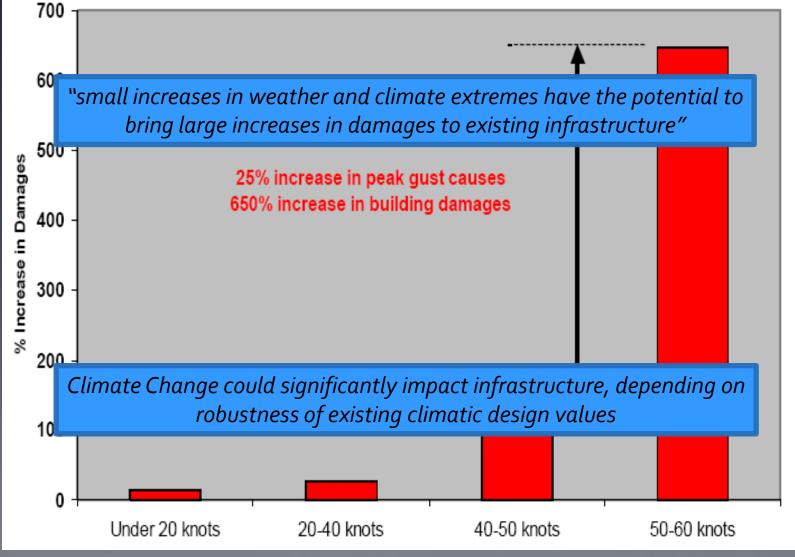
What is the concern with infrastructure and changing climate?

- Existing infrastructure has normally been designed using historical climate data
- Past climate not a good indicator of future climate
- Infrastructure designed using historical climate data will not be sufficiently resilient for its service life in the future climate
- Increasing occurrence of extreme weather events causing damage and destruction with high cost to repair and replace


Planning Infrastructure for Changing Climate Strategy #1: Design and Service Life Considerations

Structures	Expected Lifecycle				
Houses/ Buildings	Retrofit/alterations 15-20 yrs Demolition 50-100 yrs				
Storm/Sanitary Sewer	Base system 100 yrs Major upgrade 50 yrs Components 25 – 50 yrs				
Dams/ Water Supply	Base system 50-100 yrs Refurbishment 20-30 yrs Reconstruction 50 yrs				
Roads & Bridges	Road surface 10 - 20 yrs Bridges 50 - 100 yrs Maintenance annually Resurface concrete 20-25 yrs Reconstruction 50-100 yrs				

- Design life varies
- Component-based
 vulnerability assessment
- Safety / economics / technical
- There is adaptive capacity and resilience because of maintenance & rehabilitation
- Conversely, poor maintenance and lack of rehabilitation contributes to vulnerability



Strategy #2:The Past IS NOT the Future

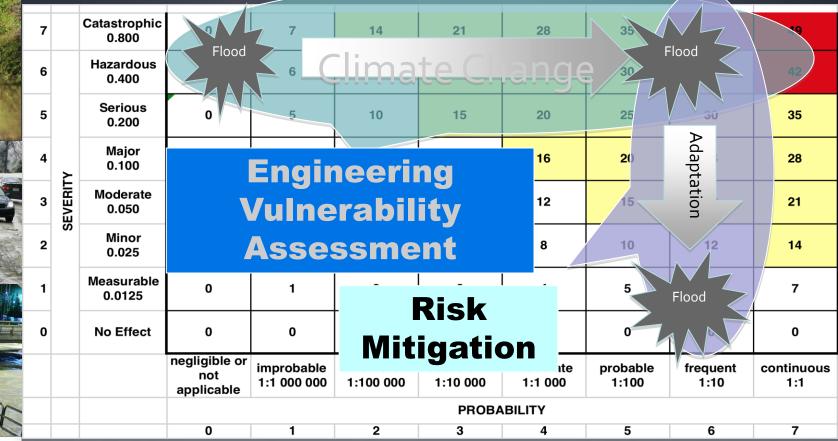
Small Increases = More Infrastructure Damage

How do Small Changes in Climate Lead to Catastrophic Failure?????

- Design Capacity
- Safety Factor
- Impact of age on structure
- Impact of unforeseen weathering
- Design Load
- Change of use over time
 - For example population growth
- Severe climate event

Capacity

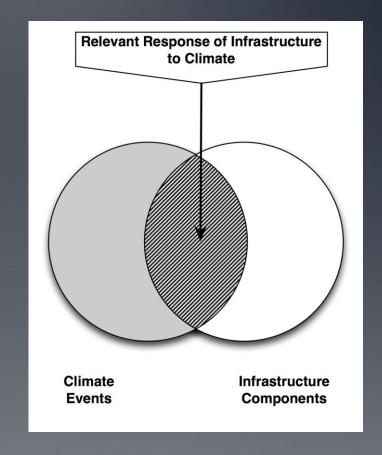
-oad


Strategy #3: Climate Change Risk Mitigation through Adaptation

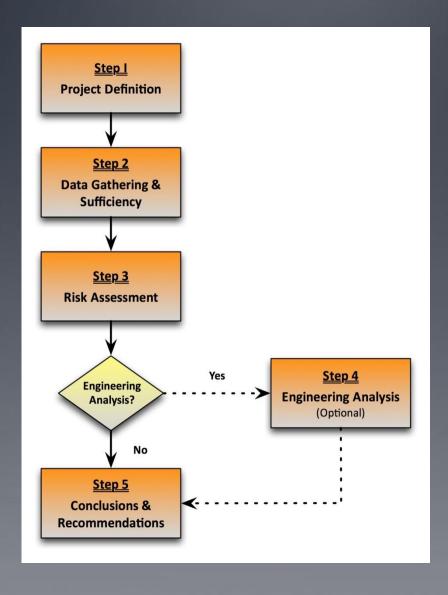
7		Catastrophic 0.800		7	14	21	28	32	7:2	49		
6		Hazardous 0.400	Flood	•	imat	e En	ange	30	Flood	42		
5		Serious 0.200	0	5	10	15	20	25	30	35		
4	>	Major 0.100	0	4	8	12	16	20	24 Adaptation	28		
3	SEVERITY	Moderate 0.050	0	3	6	9	12	15	ation 18	21		
2	S	Minor 0.025	0	2	4	6	8	10	12	14		
1		Measurable 0.0125	0	1	2	3	4	5	Flood	7		
0		No Effect	0	0	0	0	0	0	0	0		
			negligible or not applicable	improbable 1:1 000 000	remote 1:100 000	occasional 1:10 000	moderate 1:1 000	probable 1:100	frequent 1:10	continuous 1:1		
			PROBABILITY									
			0	1	2	3	4	5	6	7		

Strategy #3: Vulnerability Assessment and Risk Mitigation

Public Infrastructure Engineering Vulnerability Committee (PIEVC)


- Engineers Canada
- NRCan
- Transport Canada
- Environment Canada
- Infrastructure Canada
- Public Works and Government Services Canada
- National Research Council
- Alberta Infrastructure and Transportation
- NWT Department of Public Works and Services
- Government of Newfoundland and Labrador

- Institute of Catastrophic Loss Reduction
- Canadian Standards
 Association
- Federation of Canadian Municipalities
- Municipality of Portage la Prairie
- City of Toronto
- City of Delta, BC
- City of Calgary
- Ontario Ministry of Energy and Infrastructure
- Ouranos


PIEVC Engineering Protocol

- Five step evaluation process
- A tool derived from standard risk management methodologies
- Intended for use by qualified engineering professionals working with climate scientists, other disciplines (e.g. hydrologists geologists), managers, operators and maintenance staff
- Requires contributions from those with pertinent local knowledge and experience
- Focused on the principles of vulnerability and resiliency

A Structured Methodical Five Step Documented Process

PIEVC Engineering Protocol Users (People!)

- Professional engineers (first audience)
- Municipal staff Planners, managers, operators, maintainers
- Infrastructure asset managers
- Government policy-makers and regulators
- Infrastructure codes, standards and related instruments reviews and development
- Infrastructure owners and decision-makers
- Environment and economic analysts

PIEVC Applications in Canada (Case Study Approach)

- Town of Shelburne, NS New sewage treatment plant
- City of Laval Stormwater treatment and management system
- City of Calgary AB Potable water supply system
- Infrastructure Ontario Three public buildings
- City of Toronto, ON Three road culverts
- University of Saskatchewan Engineering Building retrofit and addition
- Town of Welland, ON –Stormwater/wastewater management system
- 23 case studies completed several more in progress

PIEVC Training Workshops

- Eighteen (18) training workshops delivered across
 Canada in past 18 months to over 750 people several more scheduled in 2012
- Five (5) workshops delivered internationally (Brazil, Costa Rica, Honduras, Panama)
- Willing to deliver training workshops internationally on a cost recovery basis through WFEO
- Focus on knowledge development and capacity building
- Learn by doing!



Benefits of Infrastructure Climate Risk Assessment

- Identify nature and severity of climate risks to infrastructure components
- Optimize more detailed engineering analysis
- Quick identification of most obvious vulnerabilities
- Structured, documented approach ensures consistency and accountability – <u>due diligence</u>
- Adjustments to design, operations and maintenance
- Application to new designs, retrofitting, rehabilitation and operations and maintenance
- Reviews and adjustments of codes, standards and engineering practices (underway in Canada)

Adaptive Management of the PIEVC Protocol

Questions

For more information on the PIEVC Engineering Protocol and International applications:

David Lapp, P.Eng.

Manager, Professional Practice

Engineers Canada

david.lapp@engineerscanada.ca