COP16 & MOP6 Side Event Shifting to Low-carbon and Climate resilient Development in Asia and the Pacific

NIES Panel: Asia Low Carbon Society Scenarios

Mikiko Kainuma and Junichi Fujino (NIES, Japan), P.R. Shukla (IIM, India) and Kejun Jiang (ERI, China)

> Mamey Room, Cancunmesse, Cancun, Mexico Friday, 3 December 2010

Asian LCS scenarios study

Modeling Sustainable Low-Carbon Asia

Funded by MoE, Japan

AIM (Asia-Pacific Integrated Modeling) for Asia LCS scenarios

How to deploy our study to real world

Region Specific Studies

Kyoto, Japan

Example of concrete execution plan towards Local LCS - Roadmap towards Low Carbon Kyoto study -

Action 1 Walkable City, Kyoto

The "Walkable Cury, Kytob" action will reduce CO emissions in 2030 by 722 kt CO. These are measures for promoting urban design that prioritizes predetinians and public transport in order to reduce CO, emissions in the transport sector.

In part because Kyoto City has already actively promoted this measure, we estimate that many of the measures in the roadmap can be completed by the year 2020. However, other measures such as road pricing and the introduction of light rail ramsif(IRT) that involve long-term construction work or more significant changes to the transport structure will take longer, so all of the measures will not be completed until 2028.

The objective of "Fromotion of mobility management" is to promote he use of pulits reamport by the general pulit. "Implementation of stamport demand management (DDM)" is needed to bring about a voluntary change in the attitude of the general pulit. This measure will employ educational pamphies and related maps to encourage the use of pulit stamport, opinion surveys of transport behavior and so on

"Construction of predestrian transit imalls" is a measure designed to bring about a bhif from the use of privately owned automobiles to public transport as the means of transport used by the general public. The sidewalks along Sinje-dorin the city centre will be wedered to secure a comfortable predestrian space and promote a modal shift on the part of the general public. The use of predestrian transit malls by the general public will enable C0, emissions to be reduced by 12 kr CO.

Moreover, as many tourists wist Ryoto from other areas, it is important to have these tourists use public transport as well. "Attaction of tourists using public transport" is the measure that well be employed to promote the use of public transport by tourists. Publicity campaigns well be held at major train stations in the Kinki and Chubu districts to inuite tourists to come by public transport. Moreover, the introduction of intelligent buses that travel between tourist spots in the city well encourage tourists to use public transport to travel within the city as well. These measures well reduce CQ, emissions by 124x CQ.

In the "fromen at current levels" case , the modal share for means of transnort is the same in 2050 as it was in 2005. In the "corrective meas ures" rase , a modal shift has orrurred from privately owned automobiles to other means of transport, with the result that the automobile share has detreased and the share of public transport, bizgele and pedestrian transit has intress ed. In the "corrective measures" case, the modal share for means of transport within the region that was or rupied by automobiles has shifted 10%10 trains, 20%10 buses, 8%10 pedes trian transit, and 7% to birveles. Horeo ver, interregional transport within the city by automobile has shifted 10%to trains 20%to buses and 5% each to ned estrian ir ansit and birgeles. Transport to plates ontside the region by sulomobile has shill ed 50 %10 trains.

Six Action Plans in Kyoto

Walkable city	, Kyoto	Deca	arbonization of li	ndusytry
Kyoto-style and For Develop	Cor of F	Comprehensive Use of Renewable Energy		
Low Carbon Lifestyle		e Es [.] Fur	Establishment of a Funding Mechanism	
4000				
0 3500 -				461
- 0000 [<u>k</u> t				513
				644
jeg 2000 -				722
				1453
- 0001 Guiss				1433
0 [°] 500 -				
0				
2010	2015	2020	2025	2030

Region Specific Studies

Low Carbon Cities: Sustainable Iskandar Malaysia

Establishment of a sustainable low - carbon society in Iskandar Malaysia Create awareness among local authorities, the State government, stakeholders and the community urgent and decisive actions to be taken to realize a robust growth and low - carbon Malaysia

NIES JAPAN

India: Commitments, Actions and Drivers

Commitments and Actions

Copenhagen Commitments

- 20 to 25% Emissions Intensity Reduction from 2005 to 2020
- Per Capita Emissions Below OECD Average (through 2100)

National Climate Change Action Plan - 8 National Missions

- 1. Solar Energy (20 GW by 2022; 2 GW off-grid; 20 m sq. m collectors)
- 2. Enhanced energy efficiency (Avoided capacity of 19000 MW by 2014-15)
- 3. Sustainable habitat
- 4. Water Sector (20% water use efficiency improvement)
- 5. Sustaining the Himalayan eco-system
- 6. A "Green India" (20 Mil. Hectare afforestation by 2020; Forest cover from 23 to 33%)
- 7. Sustainable agriculture (micro irrigation promotion in 40 m ha)
- 8. Strategic knowledge for climate change

Domestic Actions

- Carbon tax on coal to fund clean energy
 - US \$1/ton on domestic & imported coal; funds to be use for Clean Energy
- Enhanced Energy Efficiency measures
 - National Solar mission (20 GW by 2022; 2 GW off-grid; 20 m sq. m collectors)
- Mass Distribution of CFLs
 - Potential reduction of 6 GW of electricity demand

Drivers of Economy

BAU Projections

% Annual Intensity Decoupling: BAU						
Period	Energy	Emissions				
2005-2020	2.7	2.8				
2005-2050	3.0	3.6				

% Annual Energy intensity decoupling for Copenhagen Commitment:

1.5 to 1.9 Percent

2°C Stabilization: Mitigation Alternatives

Sustainability Approach: aligning climate and sustainable development actions

- Low Carbon Price
- Bottom-up/Demand-side actions
- Behavioural change
- Diverse Technology portfolio

Technology Co-operation Areas

- Transport Infrastructure Technologies
- 3R, Material Substitutes, Renewable Energy
- Process Technologies
- Urban Planning, Behavioral Changes

City Planning: Climate and Co-benefits

Analysis with AIM/EXSS Model

Co-benefits and Social Value of Carbon

Analysis with ANSWER-MARKAL Model

28 key technologies in the enhanced low carbon scenario in China

No.	Sector	Technology	Description	Note
1	Industry	High energy	High efficiency furnace,	Nearly in
	technology	efficiency	kiln, waste heat recovery	market
		equipment	system, high efficiency	
			process technologies,	
	4		advanced electric motor	
2		New manufacture		
		process technology		
	4	for cement and steel		
3		CCS	In cement, steel making,	
			refinery, ethylene	
L	-		manufacture	
4	Transport	Super high efficiency	Advanced diesel hybrid	
-	4	diesel vehicle	engine	
5	4	Electric car		
6	4	Fuel cell car		
/		High efficiency	30% higher energy	
0	4	aircraft	efficiency	
8		Bio-tuel aircraft		
9	Building	Super high efficiency	With COP>7	
10	4	air-conditioner		
10	4			┝────┦
11		In house renewable	Solar PV/Wind/Solar hot	
12	4	energy system	water and space heating	
12	4	Heat pumps		iviature
13		High isolation		iviature
14	4	building		Mature
14		efficiency		hoforo 2020
15	Power		With efficiency above 55%	Derore 2030
10	generation	Generation	with efficiency above 55%	
16	Beneration		With efficiency above 60%	
17	1	On shore Wind	with efficiency above 00%	Mature
18	1	Off shore wind		Mature
10				hefore 2020
19	1	Solar PV		
20	1	Solar Thermal		
21	1	4 th		
~ 1		4 Generation		
22	4		With officiancy chave 65%	
22	4	Riomace ICCC	with efficiency above 65%	
23	4			
24		gonoration		
25	Altornative fuels	Second generation		
25	Alternative fuels	bio othered		
26	4		Vahislas, ships vasada	
20 27	Grid	Diu-ulesei	venicies, snips, vesseis	
21 29	Circulating			
20	tecnologies	reducing material		
	techologies			
		use		

Policy roadmap: Super high efficiency air conditioner

- Efficiency Standard: COP, MEPS
- Government Planning
- Subsidy

A Snapshot of Selected China Energy Options Today: Climate and Energy Security Impacts and Tradeoffs in 2025

Reduce

Energy

Security

underlying the options on this

Revised 7/10/2008

Thank you very much!