Bridging the gap

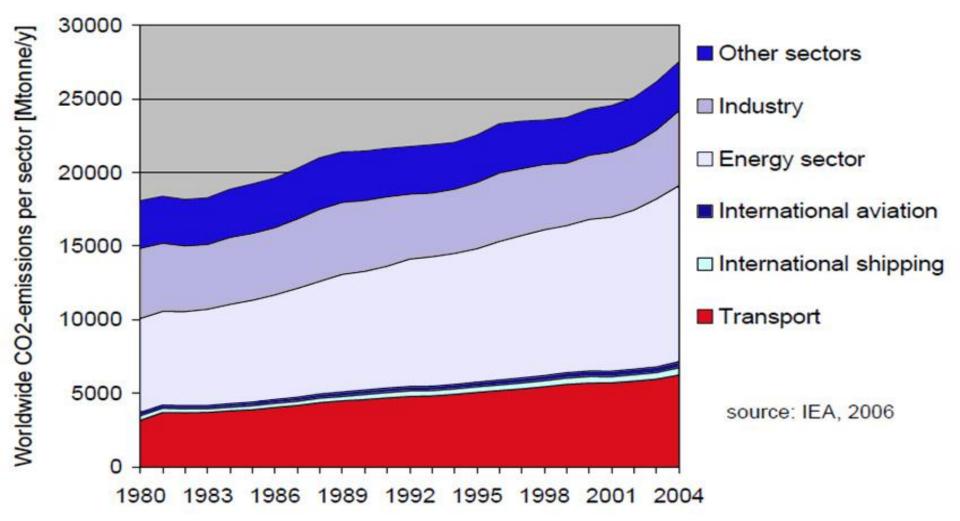
Pathways for Transport in the Post 2012 Process

Sustainable Urban Transport Solutions for East African Cities 'SUSTRAN Project'

Bridging the Gap between Transport and Climate Change in Africa,

Doha, 01.12.2012

CONTENTS


- 1. Introduction sustainable mobility
- 2. Objective
- 3. Project components
- 4. Implementation arrangements
- 5. Project lessons

Background

Energy-related CO2 emissions of various sectors (worldwide)

Introduction

BACKGROUND

By 2030, the population living in urban areas in East Africa will increase from 7.5% of the average annual population (1950 to 2000) to 22.6% (2000 – 2030)

Preparing for this continued urban growth now provides the opportunity to avoid mistakes made by other cities already further along in their development paths.

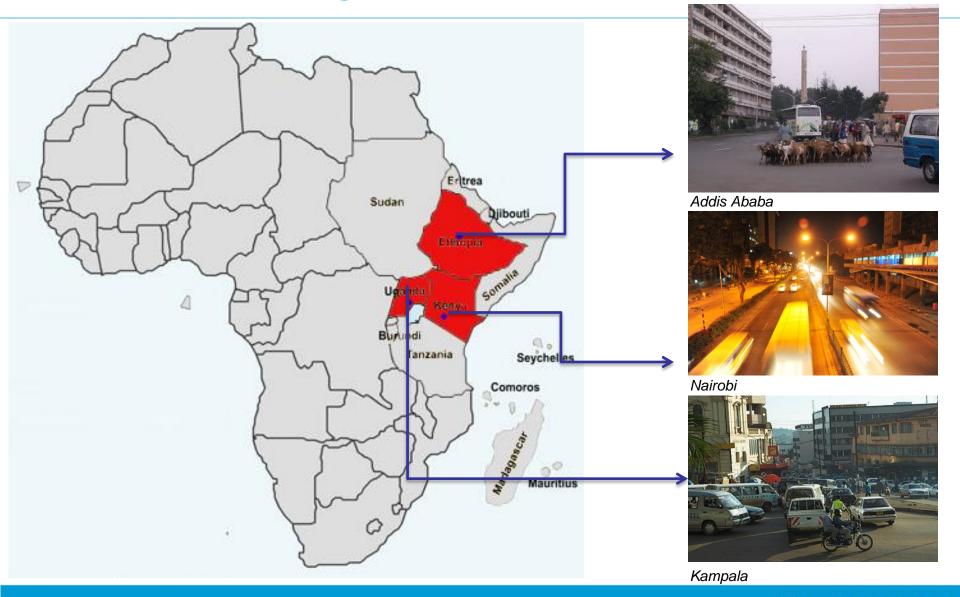
Start: June 2011

GEF funding: USD 2.8 million

Model initiative supporting the design & implementation of integrated sustainable transport projects in the three capital cities of Kenya, Uganda and Ethiopia

Strategic Response

Upgrade transit systems


Implement improved non-motorized transport infrastructure

Apply travel demand management
Other supporting policies

Reduce growth in private motorised vehicles

SUSTRAN Project cities

Objective

Create the technical and institutional basis for implementing metropolitan sustainable transport networks.

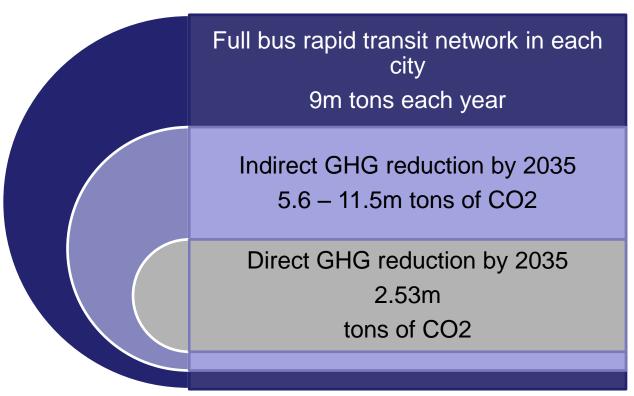
Technical basis: Establish a demonstration corridor for sustainable urban mobility.

Institutional basis: Building awareness, understanding, skills in public institutions, the public and other stakeholders.

Project components

1. Technical assistance and institutional support for the development of a comprehensive sustainable metropolitan transport system in Addis Ababa, Kampala and Nairobi

2. Planning & design for implementation of a demonstration sustainable transport corridor in each city: bus rapid transit (BRT), non-motorized transport (NMT) & transportation demand management (TDM) measures


3. Feasibility of application of clean vehicles and fuel technology initiatives in Addis Ababa, Kampala and Nairobi

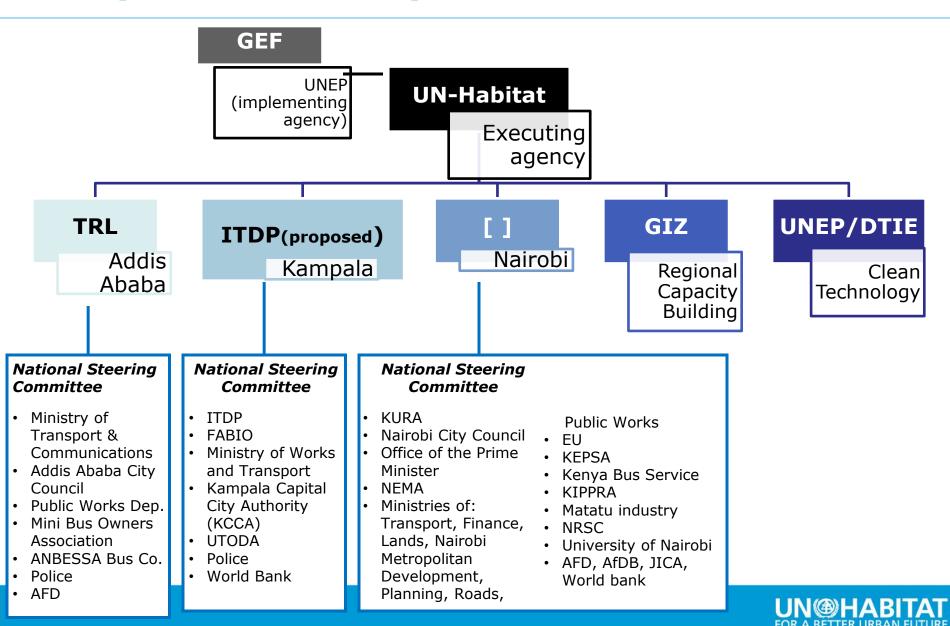
4. Regional capacity building, awareness raising and networking

Anticipated project benefits

Anticipated project benefits:

Coupled with land use regulations and as a natural result of better access, property value increases, stimulating denser urban development

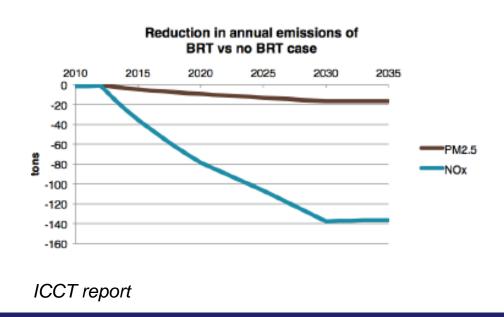
If gold standard BRT is built, indirect GHG reductions through replication or expansion in that city. Expansion factor: 4 to 8 times.

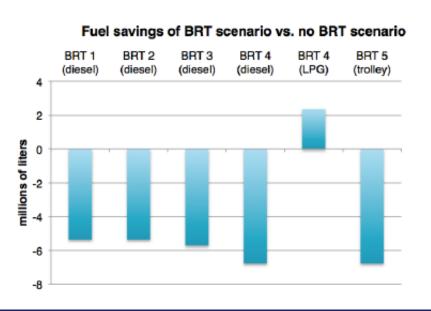


Corridors in each city by 2035:

Kampala – 65 km. Addis - at least 58 Km. Nairobi - 75 Km.

Implementation partners

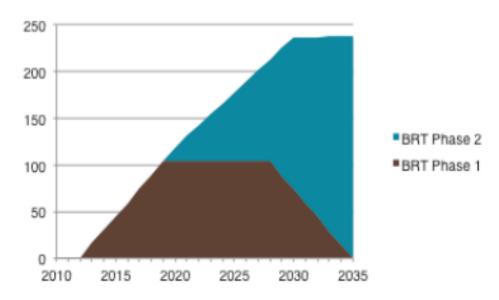



SUSTRAN lessons – Clean Technology

CLEAN TECHNOLOGY OPTIONS

Cost and benefit analysis carried out in the three cities based on:

- Technology availability
- Fuel availability and quality
- Maintenance practices and capacity.


Main probable emissions reductions will result from modal shift to BRT system

SUSTRAN lessons - Clean Technology

City	Assumed BRT bus demand, 2030
Nairobi	295
Kampala	100
Addis Ababa	237

Fleet of BRT buses – ADDIS ABABA

Brown – Euro IV diesel
Blue -- Electric
Assuming that half of the buses will be deployed in
Phase 1 (2013-2020) and half in Phase 2 (2020-2030).
BRT bus fleet growth assumed to be linear over each
phase (ICCT).

Hybrid diesel Euro IV buses recommended for the initial phase (2013-2020) and electric buses in the second phase (2020-2030)

Clean Technology assessment - Addis Ababa

Scenarios	Annual technology cost	Annual health benefits	Annual fuel savings benefit	Annual time savings benefit
BRT 1: Diesel BRT	\$17.5	\$0.14 to 1.4	\$10.0	\$7.7
BRT 2: Clean diesel BRT	\$18.9	\$0.14 to 1.5	\$10.0	\$7.7
BRT 3: Hybrid diesel BRT	\$20	\$0.14 to 1.5	\$10.7	\$7.7
BRT 5: Diesel + Electric trolley BRT	\$22.4	\$0.14 to 1.5	\$12.7	\$7.7

Summary of cost and benefits of technology scenarios in 2035 - ICCT

Clean Technology assessment - Kampala

Scenarios	Annual technology cost	Annual health benefits	Annual fuel savings benefit	Annual time savings benefit
BRT 1: Diesel BRT	\$8.7	\$0.02 to 0.21	\$5.9	\$3.4
BRT 2: Clean diesel BRT	\$9.4	\$0.02 to 0.22	\$5.9	\$3.4
BRT 3: Hybrid diesel BRT	\$9.6	\$0.02 to 0.22	\$6.3	\$3.4
BRT 5: Diesel + Electric trolley BRT	\$9.7	\$0.02 to 0.22	\$7.5	\$3.4

Summary of cost and benefits of technology scenarios in 2035 - ICCT

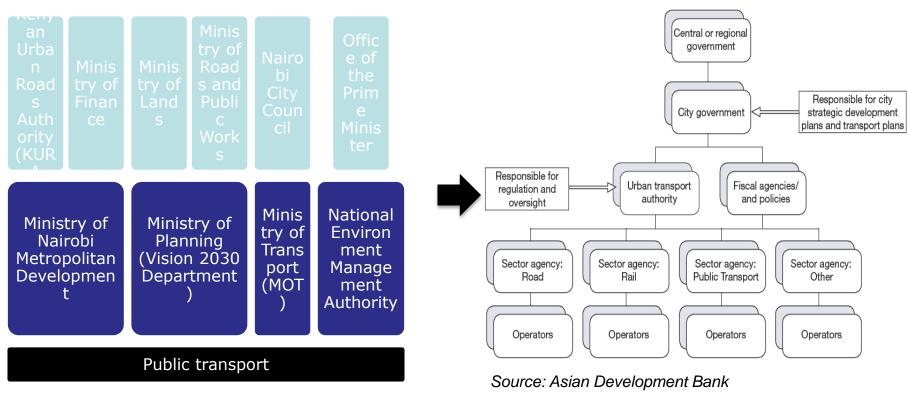
Clean Technology assessment - Nairobi

Scenarios	Annual technology cost	Annual health benefits	Annual fuel savings benefit	Annual time savings benefit
BRT 1: Diesel BRT	\$23.7	\$0.06 to 0.6	\$19	\$6.6
BRT 2: Clean diesel BRT	\$25.6	\$0.07 to \$0.7	\$19	\$6.6
BRT 3: Hybrid diesel BRT	\$26	\$0.07 to \$0.7	\$20	\$6.6
BRT 4: LPG BRT	\$28.5	\$0.07 to \$0.7	\$16	\$6.6
BRT 5: Diesel + Electric trolley BRT	\$24.6	\$0.07 to \$0.7	\$24	\$6.6

Summary of cost and benefits of technology scenarios in 2035 - ICCT

SUSTRAN Project lessons

Prioritise capacity building for all key stakeholders via peer to peer sharing


Study tour and exchange of experiences in Addis Ababa, Kampala and Nairobi

- Regional training, focusing in stakeholders engagement, industry transformation, integration of different modes and institutional development for mass rapid transit
- Regional collaboration (lessons from Johannesburg Rea Vaya BRT, Dar es Salaam DART implementation, Lagos LAMATA)
- Platform to advocate for national urban policies that support smart growth (compact cities, planned city expansion and infill)

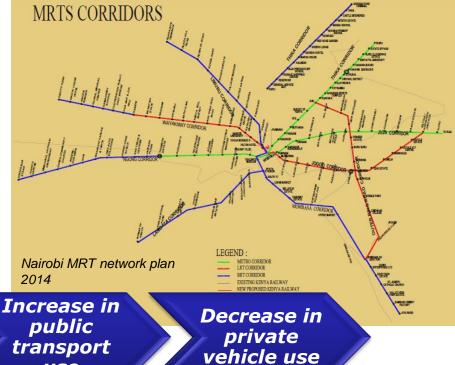
SUSTRAN Project lessons

- Early in the project engage all stakeholders and involve local communities that are affected by the project;
- Support an independent transport entity, with decision making power and financial, legal, institutional and technical capacities.

Fragmented responsibilities

Clear responsibilities

SUSTRAN Project lessons


- Start with a pilot (learning curve)
- Focus on integration of different transport modes
- Integrate with urban planning and land use plan
- Use experience from other projects, but adopt the system characteristics to the local needs.

E.g. Integrated public transport

- Service quality car comparable
- Multi-modal network integration
- Schedule and connection integration
- Fares and tariff integration (one ticket)
- Infrastructure integration

Integrated public transport

Meets the needs of customers

transport use

Robert Kehew

Robert.Kehew@unhabitat.org

www.unhabitat.org