Bridging the gap

Pathways for Transport in the Post 2012 Process

See we

Flywheel energy storage for transport applications

Matthew Burke Williams Advanced Engineering

Transport and Climate Change Expert Day, Doha 29.11.2012

Kinetic Energy Recovery System (KERS)

- System introduction due to FIA regulation change announced 2006
 - Allowed from 2009
 - 400 kJ per lap
 - 60 kW max. power
- Technology choice for teams
 - Chemical batteries
 - Ultra-capacitors
 - Flywheels (mechanical or electrically coupled)

Technology Comparison

(continuous)	, 5	, ,	
Specific Energy	390 kJ/kg	11 kJ/kg	33 kJ/kg
Weight to achieve 120 kW (continuous cycling) power	233 kg	375 kg	40 kg
Cycle life (charge/discharge cycles)	<10,000	~1,000,000	~10,000,000

Technology Background – Urenco

- Uranium enrichment using gas centrifuges
- Design and manufacture since 1960's
- Ultra high speed composite centrifuges
- >500,000 centrifuge systems operational
- Design life greater than 15 years with zero-maintenance bearing systems.
- First generation machines still running after more than 20 years

Magnetic Loaded Composite (MLC)

- Technology
 - Magnetic powder in composite
 - Impulse magnetised
 - Patent protected
- Advantages
 - Very high continuous symmetric power density
 - Sufficient energy capacity
 - Long charge/discharge cycle life
 - Insensitive to ambient temperature
 - Manufactured using mature massproduction processes
 - Non-toxic construction resulting in low-cost recycling at EoL

Regenerative Braking – How does it work?

Williams' Flywheel Energy Storage Products

Mobile System

Stationary System

1.8 MJ / 120 kW

5.5 MJ / 200 kW

Williams' Flywheel Construction

Mobile System

- MLC rotor
- Ceramic bearings

Stationary System

- MLC rotor
- Magnetic and pin bearings

Bus Application (Mobile)

- Working with Go-Ahead to develop and produce six prototype London buses with a retrofitted mobile hybrid flywheel system
- 30% improvement in fuel economy
- The average bus produces 77-100 tonnes of CO2 per annum. The hybrid system reduces CO2 by 15-20 tonnes of CO2 per annum

Gyrodrive one gallon

Standard bus one gallon

Mass Transit Application (Stationary)

- Williams stationary flywheel systems installed at the Bombardier test track in Canada
- Energy savings, emergency reserve, and voltage support testing and evaluation

- The flywheels were able to capture, store, and regenerate 100% of the available braking energy
- Up to 16% energy savings

Mass Transit Application (Mobile)

- Automated people mover (APM) hybridisation study using mobile flywheel
- One mobile flywheel system required per car
- Up to 19% energy saving calculated from actual energy measurements
- Equivalent to 120.9 tonnes
 CO2e reduction per year

WILLIAMS ADVANCED ENGINEERING

Thank You