

Food and Agriculture Organization of the United Nations

Peatland mapping and monitoring: Priorities for climate action

Liva Kaugure, Maria Nuutinen, Laura Villegas, Adam Gerrand, Yelena Finegold

Event: Avoiding loss of high-carbon soils through peatland mapping and monitoring for climate action, **2 December 2019, UNFCCC COP 25, Madrid**

Food and Agriculture Organization of the United Nations

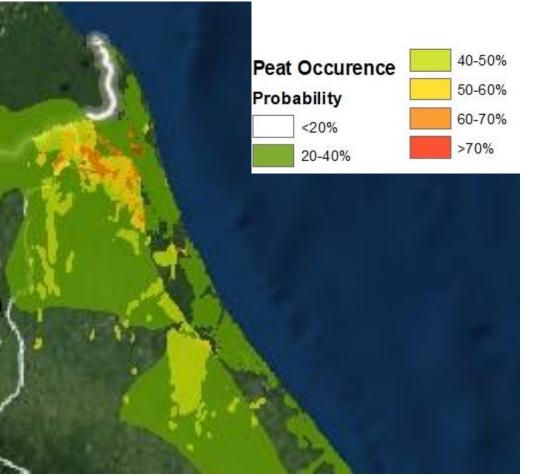
Why map and monitor peatlands?

- Know the location for land use planning to avoid and mitigate threats and losses
- Assess condition and possible need for action for action plans and budgets
- 3. Monitor & adapt management interventions
- **4. Report** to international conventions and initiatives

Challenges

In tropical peatland forest

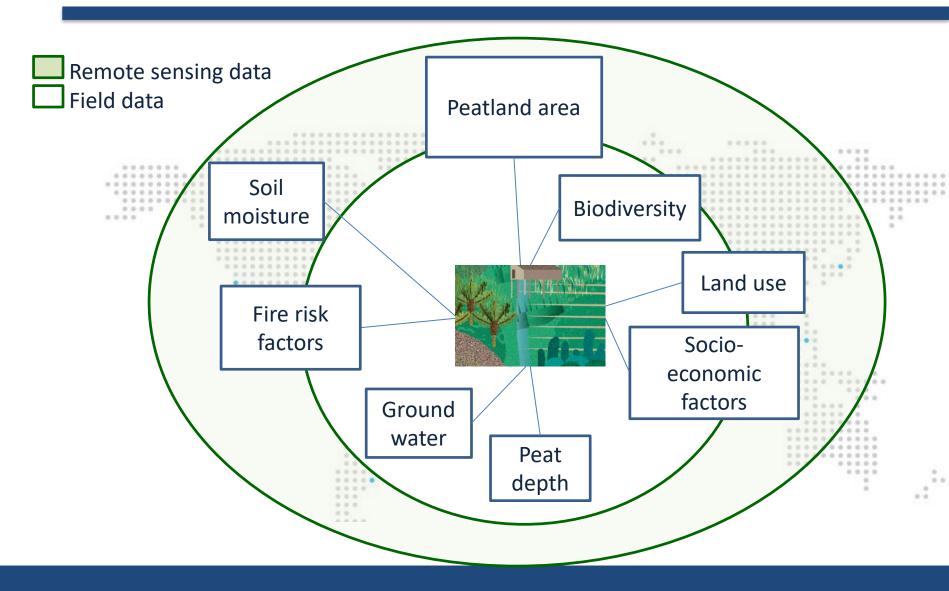
Peatlands look very different



Google earth

Peatland mapping as the 1st step

Mapping allows to **collect information on: 1) peatlands' extent, 2) status**: including potential drainage and other management, and 3) ecosystem services



When water levels decrease, peat degrades and burns easily. Monitoring approaches need to focus on water content of peat soil.

> Therefore we need to adapt and develop further **land use and land use change monitoring with new approaches**

Data collected both remotely and from the field are needed

Peatland monitoring

Monitoring is essential to alert conversions, assess restoration activities and undertake adaptive management of peatland areas. Peatland monitoring should be integrated in existing land monitoring systems with a landscape approach.

Examples of peat monitoring tools

Type of tools	Object of monitoring	Examples of tools
Ground based	Water table level	Dipwells
	Surface level	Subsidence poles
	GHG fluxes	Flux towers
Remote observational	Hydrological characteristics, fire, canal detection, forest degradation	Synthetic aperture radar
	Canal water depth, surface level	Lidar
	Surface level (cm)	Interferometric SAR
Analytical	Impact of projects on carbon balance	EX-Ante Carbon Balance Tool – EX-ACT
	Soil Organic Carbon	Soil Carbon Model Yasso

Peatland restoration monitoring in Indonesia

High resolution satellite data is used for monitoring restoration

Canal blocking and backfilling

Integrated monitoring systems

Integrated monitoring would help reporting for various Conventions and commitments:

United Nations Convention to Combat Desertification

Convention on Biological Diversity

Priority peatland actions

- 1 Accurate maps as for monitoring and defining management actions
- Identify key opportunities and issues using remote sensing monitoring
- 2 Agree on peatland definitions to improve maps
- Carbon content, and minimum thickness to define a peatland

3 - Update peatland emission factors

- Increasing accuracy of inventories and reporting to focus on best improvements
- 4 Integrate peat into land monitoring systems
- Act effectively supporting existing systems e.g. NFMS
- 5 Prioritize monitoring and further develop collaboration & capacity
- Set up clear institutional responsibilities and collaboration

Peat in a crater, Ranu Kao, on Easter Island

Thank you!

Contact: Maria.Nuutinen@fao.org

www.fao.org/redd/areas-of-work/peatlands