
United Nations Framework Convention on Climate Change Side Event 1 December 2010 Cancun, Mexico

Climate Change Strategies for Mitigation of GHG Emissions in the Oil Palm Industry

Tan Sri Bernard Dompok Minister of Plantation Industries and Commodities Malaysia

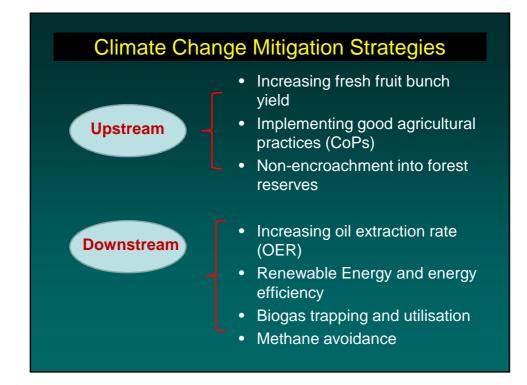
- Malaysia's commitment to reduce GHG
- 5 principles and 10 strategies of the National Climate Change Policy 2010
 - Malaysian Oil Palm Industry
- Climate Change Mitigation Strategies
 - Upstream (nursery, plantations)
 - Midstream/Downstream (palm oil mills etc)
- GHG values from LCA studies
- Conclusion

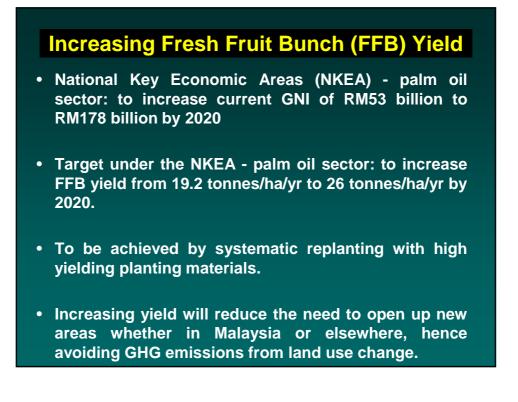
Extract from Speech by Prime Minister of Malaysia at COP 15 on December 17 2009

 ".... I would like to announce here in Copenhagen that Malaysia is adopting an indicator of a voluntary reduction of up to 40% in terms of emission intensity of GDP by the year 2020 compared to 2005 levels....

.....This indicator is conditional on receiving the transfer of technology and finance of adequate and effective levels from the Annex I partners, that correspond to what is required in order to achieve this indicator; and shall not take carbon tariffs and border adjustment measures against products, services and investment",

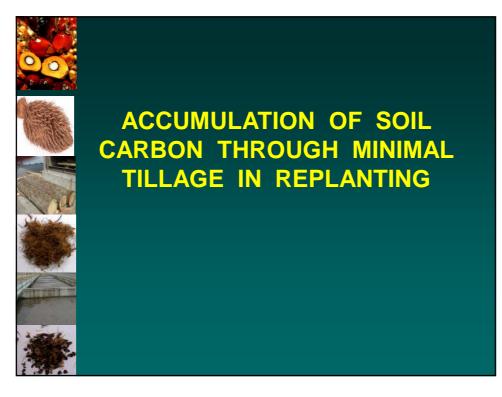
Strategic Thrusts of the National Policy
on Climate Change (2010) to achieve target


No	Principles	No	Strategies
1	Sustainable development	1	Harmonize adaptation and mitigation
		2	Institute low-carbon economy
		3	Support climate-resilient investment
2	Conserve environment &	4	Balance adaptation and mitigation
	natural resources	5	Consolidate energy policy with RE & EE
3	Coordinate implementation	6	Integrate cross-cutting issues in policies
		7	Support knowledge-based R&D decisions
4	Effective participation	8	Stakeholder collaborate & coordination
		9	Increase community awareness
5	Common & differentiated role	10	Strengthen international involvement
	(Source: National Policy on Clin	mate Ch	ange, 2010) 7



Malaysian Oil Palm Industry Statistics 2009

- World's 2nd largest producer and exporter of palm oil
- Produced 17.56 million tonnes crude palm oil
- Exported 22.4 million tonnes palm oil and its products worth RM49.6 billion
- Total oil palm planted area 4.69 million ha
- 80-90% palm oil used in food applications
- 10-20% palm oil used in non-food applications

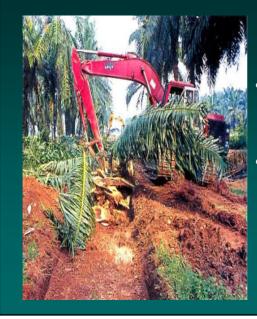


Technology and Good Agricultural Practices (GAP) to reduce GHG emissions

- Reduction (optimization) of fertilizer inputs.
- Accumulation of soil carbon in replanting.
- Recycling of oil palm biomass.
- Implementing zero burning.
- Planting of leguminous cover crops.
- Integrated Pest Management

EXAMPLES OF TECHNOLOGIES RECOMMENDED FOR REDUCTION OF FERTILIZER INPUTS

- 1) Innovative Replanting Technique for Oil Palm
 - Developed by MPOB, the young palms are planted directly into residue rows - Improve accessibility and efficiency of nutrient utilization
 - Reduce 50% of fertilizer inputs up to 5 years after replanting
- 2) Oil Palm Efficient Nutrient System (OPENS) - Assist in determining the right amount and type of fertilizer requirement
- 3) Precision Agriculture Variable Rate Technology (VRT)
 Uses precise information of location and agronomic conditions of the field to increase production by accurate and efficient use of fertilizer inputs.
 - Reduce fertilizer inputs 10-15%
- 4) Use of empty fruit bunches (EFB)Mulching for Oil Palm
 Application at 60 t/ha able to obtain similar yield as estate fertilizer rate.
- 5) Use of POME in Oil Palm Plantation - POME used as inorganic fertilizer replacement reduces the production cost.


Compar	ison of Soil	N, C & C/N	l ratios wi	th minimur	n tillage
Generation	Parameters	Weeded circle	Avenue	Frond pile	Intact forest
1 st	Total C (%)	1.44	0.81	2.15	1.36
30 year old	Total N (%)	0.13	0.08	0.19	0.11
	C:N	11.08	10.88	11.32	12.36
2 nd	Total C (%)	1.81	1.67	2.08	1.49
8 Year old Sri Gading	Total N(%)	0.14	0.14	0.17	0.16
Sh Gauliy	C:N	12.99	11.93	12.24	9.31
2 nd	Total C (%)	1.89	1.63	1.88	1.49
8 Year old Kluang	Total N (%)	0.14	0.14	0.14	0.16
Ridariy	C:N	11.82	11.64	13.43	9.31
3 rd	Total C (%)	2.40	1.93	2.35	1.30
27 Year old Layang	Total N (%)	0.21	0.18	0.21	0.12
Layang	C:N	11.43	10.72	11.19	10.83
(Source: C	han 2009, Khalid 200	9, Chan and Haniff .	2010)		

Recycling of Biomass with Zero Burning

- Reduced need for mineral fertilizers and therefore reduces GHG emissions from production and use of fertilizers.
- Avoids GHG emissions from burning of tree residues during replanting.

Biomass from The Field

- Regular pruning of Fronds
- On replanting : Trunks and Fronds

EFB Mulching

Normal application : 30 – 60t /ha Reduce production cost

Benefits of Mulching

- improve soil structure
- aeration, water holding capacity
 improve soil pH
- improve nutrient status
- Cation Exchange Capacity (CEC)
- root growth and development
- increase microbial activities
- reduce leaching
- improve oil palm growth

Guidelines for the Implementation of The ASEAN Policy on Zero Burning (2003)

The Zero Burning Technique for Replanting Oil Palm to Oil Palm (felling and shredding/chipping)

Alternative Approach # 1 – Zero Burning by Pulverization

Alternative # 2 – Windrowing without Shredding of Palms

Alternative Approach # 3 – Planting of Young Palms on Residue Piles (Introduced by MPOB – TOT Seminar 2001)

Zero burning - Innovative technique of replanting Young palms planted onto residue rows Improved accessibility and efficiency of nutrient

Benefits:-

- Sustainable practice
- Environment free from smoke pollution and trans- boundary haze
- Nutrient recycling conserving soil fertility
- Reduce chemical fertilizer inputs
- Maintaining biodiversity of soil fauna and microbial communities
- Moisture conservation
- Improved soil quality

FERTILIZER EQUIVALENT OF OIL PALM BIOMASS
AT REPLANTING

	(TONI	NES / HA.)	
A/S	CIRP	MOP	KIES.
3.06	0.37	2.77	1.0

Theoretically can supply N,K, Mg for 5-6 years and P for 2 years

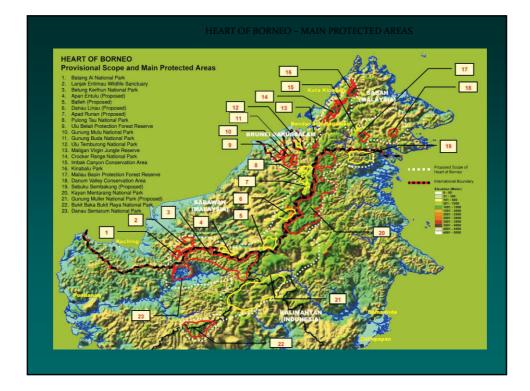
PRODUCTION OF COMPOST FROM EFB AND EFFLUENT – ASIA GREEN

Planting of leguminous cover crops

Typically established within OP plantations as natural cover crops

Benefits:-

- Prevent erosion
- Enhance soil fertility
- Water / moisture conservation
- Provides nitrogen N fixation
- Improve soil quality



Integrated Pest Management

- Management of pests, diseases, weeds and introduced species
- An effective integrated pest Management systems exists
- Use of natural predators, beneficial plants
- Use of natural biopesticides like Metarhizzium, Bt etc to reduce pesticides
- Use of agrochemical is minimal hence reducing GHG emissions from their production and application.

Increasing Oil Extraction Rate (OER)

- Target under NKEA palm oil sector: initiatives to increase National OER from 20.49% to 23% by 2020.
- Coupled with projected increased of FFB yield from 19.2 to 26 tonnes FFB/ha/yr, this translates to an oil increase from 4 tonnes to 6 tonnes oil/ha/yr in 2020.
- This will reduce GHG emissions from land use change.

Renewable Energy (RE) Development for Oil Palm Industry

Oil palm biomass used

- As fuel for combined heat and power (CHP)/power generation
- For conversion to transportable 1st generation biofuels.
- For conversion to 2nd generation biofuels

Oil Palm Biomass as Fuel for CHP/Power

- All palm oil mills use palm residue (palm shell and mesocarp fibre) for CHP generation for process steam and electricity for the mill.
- EFB and biogas from POME also used to generate power for on-grid and off-grid purpose.

RE Target for On-Grid Connection

- Malaysia plans to generate 8% or 2,560 MW of the National Grid load from RE, <u>most of which will</u> <u>be from Palm Oil Biomass or Biogas</u>.

•	So Palm Oil Industry has a significant role to play
	in the future for supplying the electricity to the
	national grid

Biomass*	56.0%
Municipal Solid Wastes (MSW)	5.1%
Mini Hydro	20.2%
Solar	7.8%
POME and others	10.9%
* Mostly from oil palm	

Current Biomass U	tilisation
EFB:	
Mulching	41%
Multiple applications including mulching	39%
Fiber processing	3%
Biofertiliser/composting	3%
Boiler fuel	3%
Incineration	10%
Others	1%
POME:	
Biogas Trapping Facility*	7%
Open ponding	73%
Open digester	6%
Tertiary Treatment	6%
Compost	<1%
Others	~7%
* Under Planning	: 54 (13.0%)
Under Construction	: 15 (3.6%)

Max	RE	Pot	en	ti	aľ	* f	ro	m	E	FE	3 8	an	d F	PO	ИE
	tonne/ year (mil.)	Peninsular (MW)	Johor	Kedah	Kelantan	Melaka	N. Sembilan	Pahang	Perak	P. Pinang	Selangor	Terengganu	Sabah (MW)	Sarawak (MW)	Total
EFB	20	626	183	19	17	7	36	168	120	3	42	31	330	109	1065
POME	58	159	46	5	4	2	9	43	30	1	11	8	84	27	270
Installed Capacity	-	20,000											720	950	21,670
Current Demand	-	12,500											720	950	14,170

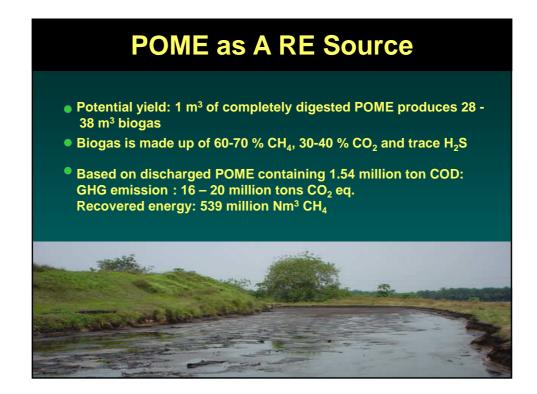
* Assuming 100% EFB & POME are utilized. Total MW will reduced proportionately according to actual % utilisation of EFB & POME.

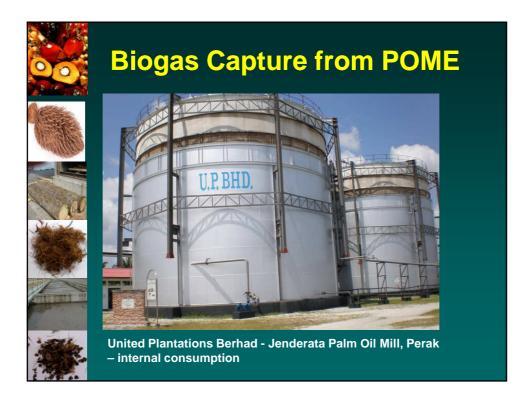
Biomass Energy Plant

Electricity Generation from EFB – internal consumption (palm oil refinery)

Small Renewable Energy Programme (SREP) - Launched on 11 May 2001 - Selling of electricity to TNB at 21 cents/ kWh.

(Babcock & Wilcox Volund Boiler)

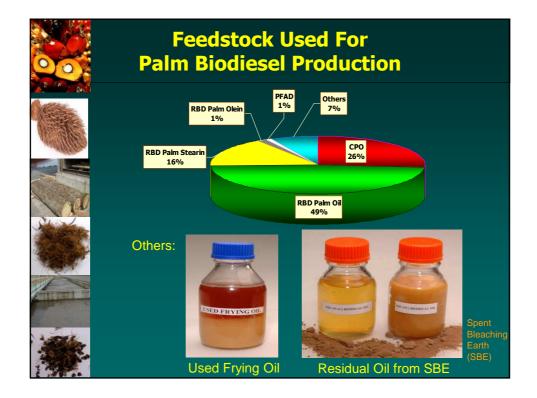

Source: (FSDP Special Issue- CoGen3)


 16 – 20 million tonnes of carbon dioxide equivalent per year mitigated

RE Potential from Biogas an Other Gases	d

	Biogas	Natural Gas	Liquid Petroleum Gas
Gross CV	19,800 - 25,700 kJ/NM ³	37,900 kJ/NM ³	100,000 kJ/NM ³
Specific gravity	0.847 – 1.002	0.584	1.5
Ignition Temp, ° C	650 - 750	650 - 750	450 - 500
Combustion air required M ³ /M ³	9.6	9.6	13.8

Biogas Capture from POME


Electricity Generation from Biogas – 1st Grid-Connected Biogas Plant

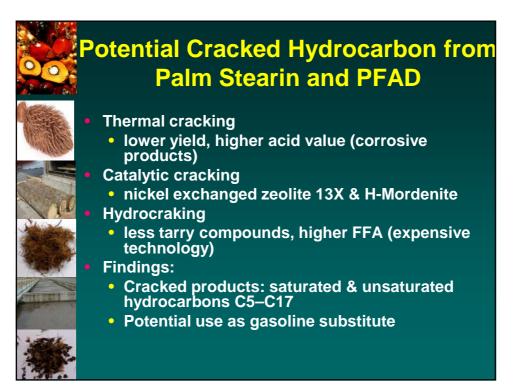
Bell Eco Power Sdn. Bhd., Batu Pahat

- Launched in 2006
- Among strategic thrusts are to produce palm biodiesel for export and for local use.
- Will result in GHG emissions reduction

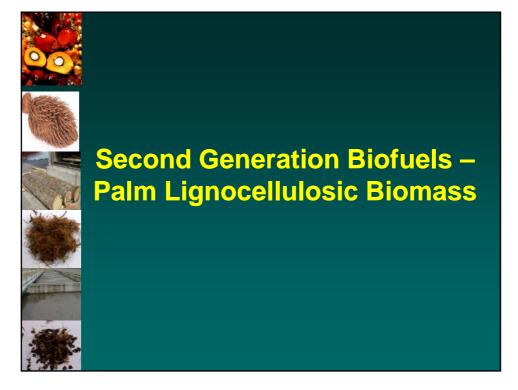
Implementation Phase	e	No.	C	apacity (T	'/Year)	
In Operation		2	2 160,000			
Not In Operation		16		2,111,60		
Completed Construction		11	978,900			
Under Construction	9	9 1,470,		00		
Pre-Construction / Planning		23		2,071,40		
Total Approved License		61		6,791,9		
Production And Export	s Of B 2006		el 2007	2008	2009	
Production And Export Palm Oil Utilized for Biodiesel		*		2008 188,683	2009 228,11	
· · · · ·	2006)*)9	2007			

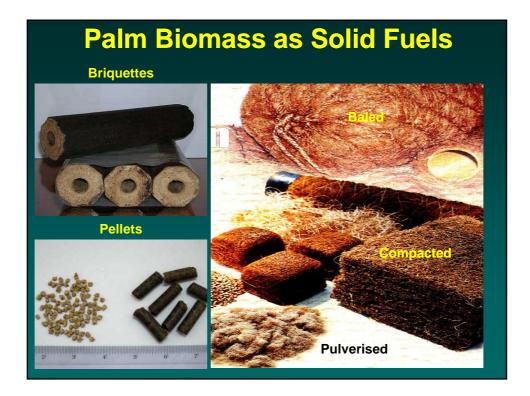
* Aug - Dec 2006

Development of Palm Biodiesel



Local Implementation of B5 Programme


- Implemented in 4000 vehicles of Army and Kuala Lumpur City Hall since February 2009.
- From 1 June 2011, will be implemented in Central Region of West Malaysia (Putrajaya, Kuala Lumpur, Federal Territory, Negeri Sembilan, Melaka)
- When implemented in whole country will involve 500,000 tonnes biodiesel per annum.
- Result in GHG emissions reduction of 1.5 million tonnes CO_{2 eq} per year.



- The US Specifications for Aviation Turbine Fuel (ASTM D1655) was taken as the reference standard
- Freezing point of aviation fuel
 47° C max (Jet A-1)
 - - 40° C Jet A
 - - 50° C Jet B
 - A few palm esters have been identified as potential aviation fuel
 - Patent filed

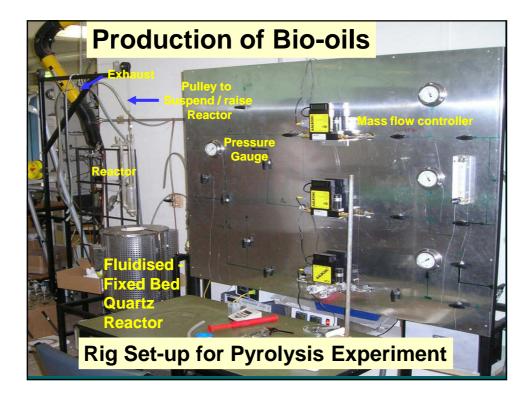
Net Calorific Value of Various
Dried Oil Palm Biomass

Sample	Average	Range (MJ/kg)
Oil palm Biomass		
EFB	18.88	18.00 - 19.92
Mesocarp fibre	19.06	18.80 - 19.58
Shell	20.09	19.50 - 20.75
Oil palm frond	15.72	15.40 - 15.95
Oil palm trunk	17.47	17.00 - 17.80
POME	16.99	16.10 - 17.65
Palm Oil		
Crude Palm Oil	39.36	39.33 - 39.38
Palm Kernel Oil	37.98	37.8 - 38.20
Other Commercial Fuels		
Bagasse,	19.4	-
Cereal Straw	17.3	
Illinois bituminuous, Coal (Anthracite)	28.3 27.0	-
North Dakota lignite,	14.0	
Coal (lignite)	15.0	
Reed Sedge peat	2.8	

Solid Fuel: Briquette Fuel from EFB

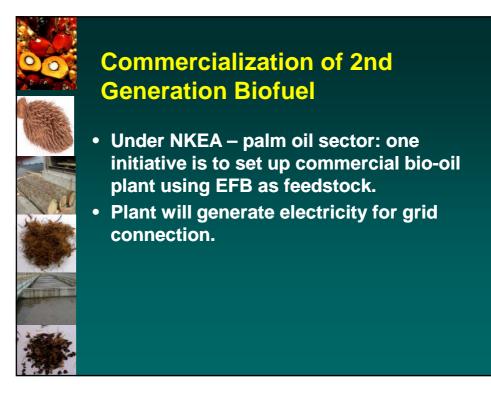
- Briquetting is a process of converting low bulk density biomass into uniform and higher density solid fuels at high pressure and temperature.
- Two types of biomass used: EFB fibre and palm shell

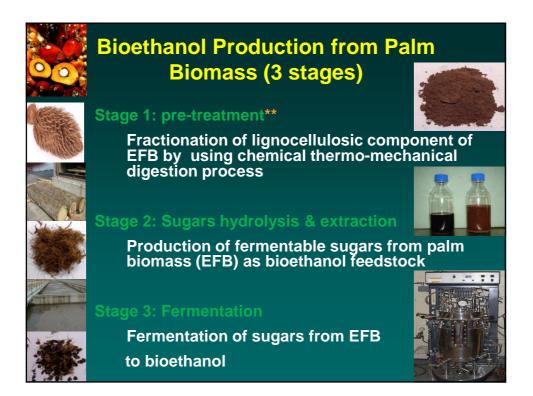
OILPALM BIOMASS BRIQUETTE (PISTON PRESS TECHNOLOGY)

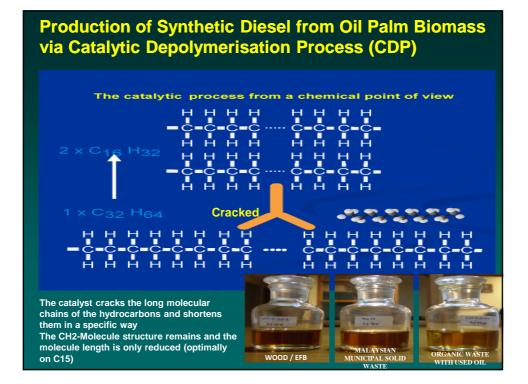


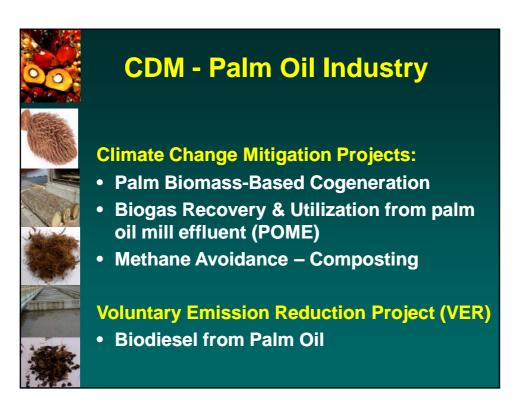
Transfer of Technology Seminar, 2010

Characteristics:


- Calorific Value 17895 18235 kJ/kg
- Moisture content < 6.0%
- Ash content < 6.0%
- Specific Density 1100 1300 kg/m³






Calorific Values of Char and Volatiles at various Pyrolysis Temperatures

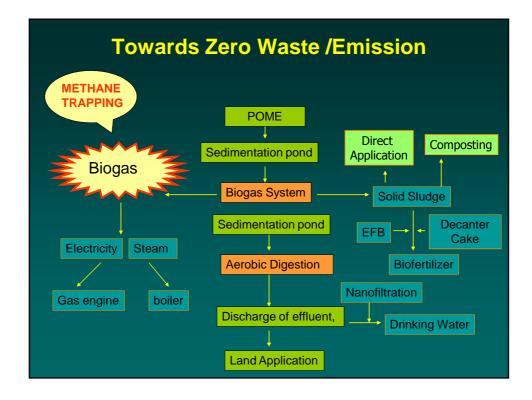
	Temperature	Calorific Value (MJ/kg)		
	(O°)	Volatiles	Char	
8	200	-	18.71	
	300	18.32	22.33	
	500	21.41	22.94	
100	600	21.17	22.98	
\square	700	20.41	22.98	
<	Original Biomass 17.28 MJ/kg			

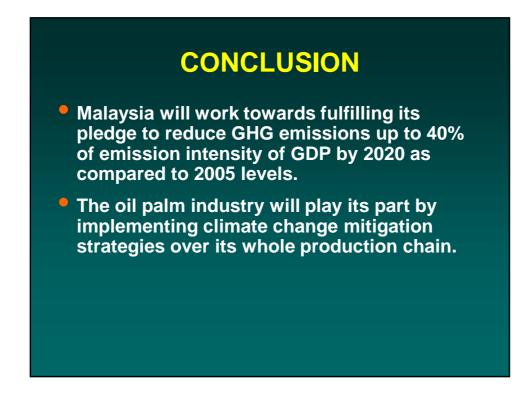
CDM Project List (Energy Project)

Year	No. of Projects	Estimated ER (tCO2e)
2002	3	152,072
2003	2	62,190
2004	9	900,758
2005	25	2,823,171
2006	21	2,621,098
2007	45	4,404,648
2008	50	4,312,507
2009	21	1,374,931
TOTAL (PINs and PDDs)	176	16,651,375

Current Status of CDM Projects in Palm Oil Sector

As of 2009, there are 129 CDM projects for palm oil sector:


Type of project	No. project	Registered
Methane recovery (Biogas project) Biomass cogeneration plant (EFB) Methane avoidance through compos	53 36 ting 40	28 15 21
	129	64


CERS ISSUED List of Projects for Palm Oil Sector Being Issued with CERs (tonne of CO_2 equivalent)					
No	Company	Sector	Туре	CERs (tonne of CO ₂ eq.)	Involvement of Annex I Party
1	Enco Energy	Palm oil refinery	Biomass	42,545	Denmark
2	Lafarge	Cement factory	Biomass	366,260	France
3	SEO	Palm oil refinery	Biomass	86,102	Canada
4	Felda Sahabat	Palm oil mill	Biomass	12,775	United Kingdom of Great Britain and Northern Ireland
5	LDEO	Palm Oil refinery	Biomass	62,814	Canada
	Total			570,496	

GHG emissions at each stage of palm oil supply chain Using LCA Approach					
Stage	Functional unit	CO ₂ equivalent (kg)	CO ₂ equivalent Without biogas capture	CO ₂ equivalent With 85% biogas capture	
Nursery	Per tonne of crude palm oil	0.067 kg	NA	NA	
Plantation	Per tonne crude palm oil	368.28 kg	NA	NA	
Mill	Per tonne crude palm oil	-	970.58 kg	505.76 kg	
Refinery	Per tonne refined palm oil	-	1113.73 kg	625.67 kg	
Biodiesel plant	Per MJ biodiesel	-	33.19 g	21.20g	
(Sourc	(Source: MPOB 2010 LCA Study)				

Oil Palm Industry Commitment to improve Carbon Management using LCA approach

Land e change Nursery Plantation Milling crushing Refinery Manufacturing Transport Product				
Upstream	→ ← Midstre	→ ←	Downstream	
Year	Methane capture	GHG emissions tCO2/tCPO with allocation		
2008	No	2.45	(Source: Jannick 2008)*	
	No	1.72		
2009	Yes	1.24	(Source: Choo <i>et al</i> 2009)	
2010	NO	0.97	(Source: MPOB 2010)	
	Yes	0.51	(Source. IVII OB 2010)	

