

SRREN: Mitigation Potential and Costs

Ilkka Savolainen, SRREN Lead Author Doha Climate Change Conference - November 2012

Global RE primary energy supply from 164 long-term scenarios versus fossil and industrial CO₂ emissions.

Source: SRREN SPM, Figure SPM.9

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

IOCC

UNEP

WMO

Global RE primary energy supply from 164 long-term scenarios versus fossil and industrial CO₂ emissions.

Why do we see such a wide RE Deployment Range in Business-As-Usual Scenarios without additional Climate Policies?

- RE deployment depends on a number of factors:
- How will the demand for energy services, i.e. the scale of the energy system develop?
- What about fossil fuel prices? fossil energy resources and extraction technology
- Will the costs of RE come down further without climate policies?
- To which other objectives such as secure energy supply, energy access, air pollution control, etc. can RE contribute?

Global RE primary energy supply from 164 long-term scenarios versus fossil and industrial CO₂ emissions.

5

And what is driving the RE Deployment in Scenarios with Climate Policies?

- RE deployment in Climate Stabilization Scenarios in addition depends on:
- How much mitigation will come from the nonenergy sectors?
- How much can *energy efficiency* do?
- What will be the role of the non-RE low-carbon supply options?
 - Nuclear Energy
 - Carbon Capture and Storage
- Can adverse impacts of RE deployment be avoided?

RE will have to play a larger role in mitigating GHG emissions if other options are not available.

Figure 10.6 Increase in global renewable primary energy share (direct equivalent) in 2050 in selected constrained technology scenarios compared to the respective baseline scenarios.

So how much does it cost?

INTERGOVERNMENTAL PANEL ON Climate change

UNEP

WMO.

Illustration of external costs due to life-cycles of electricity generation technologies – renewable energy tend to have lower external costs

Coal Fired Plants

(A) Existing US Plants
(B) Coal Comb.C η=46%
(B) Coal η=43%
(B) Lignite Comb.C η=48%
(B) Lignite η=40%
(C) Hard Coal 800 MW
(C) Hard Coal Postcom. CCS

(C) Lianita Quartual CCS

(C) Lignite Oxyfuel CCS

Natural Gas Fired Plants

- (A) Existing US Plants
- (B) Natural Gas n=58%
- (C) Natural Gas Comb.C
- (C) Natural Gas Postcom.CCS

Renewable Energy

- (B) Solar Thermal
- (B) Geothermal
- (B) Wind 2.5 MW Offshore
- (B) Wind 1.5 MW Onshore
- (C) Wind Offshore
- (B) Hydro 300 kW
- (B) PV (2030)
- (B) PV (2000)
- (C) PV Southern Europe
- (C) Biomass CHP 6 MWel
- (D) Biomass Grate Boiler ESP 5 and 10 MW Fuel

INTERGOVERNMENTAL PANEL ON Climate change

9

WMO UNEP

Source: SRREN Figure 10.36

What can we expect for AR5?

- Improvements in identifying the most salient factors that determine future RE deployment
- Several multi-model studies are currently on their way.

But...

 Future cost and performance improvements of RE and other mitigation options will remain unknown.

www.srren.org

Thank you for your attention!

Ilkka Savolainen, SRREN Lead Author Doha Climate Change Conference Doha, Qatar, 28 November 2012

