

Mitigation and adaptation in African smallholder agriculture: Synergies and tradeoffs

Marcus Kaplan – German Development Institute

Side Event COP 16 "Low Carbon Development Strategies - Panacea or Placebo? "

December 6, 2010

© 2010 Deutsches Institut für Entwicklungspolitik (DIE)

- temperature increase of 3 to 4°C in 2080 to 2099 (more than global average)
- Large uncertainties with regard to overall precipitation, changes in interannual variability, and extreme weather events
- effects of cc on crops uncertain, i.a. due to CO_2 fertilization effect

- absolute number of undernourished people increasing
- large increases in agricultural land up to 2050 (mostly rainfed)
- effects of cc on crops uncertain, i.a. due to CO_2 fertilization effect
- but: severe negative consequences with regard to harvests and thus economic output of agriculture

- Africa responsible for 7.8 % of global anthropogenic emissions (14 % of world population)
- in the land-use and the biomass burning category Africa's share much higher (21 and 37 %, respectively)
- largest increases in agricultural emissions expected for SSA and Middle East/North Africa

Region	N ₂ O soils	CH ₄ enteric	CH ₄ rice	CH ₄ , N ₂ O manure	CH ₄ , N ₂ O burning	Total
Sub-Saharan Africa						
Mt CO ₂ -eq. year ^{-1} in 1990	252	183	12	12	145	603
% change in 2005	39	34	81	33	-1	28
% change in 2020	102	77	172	83	-1	70

Source: Smith et al., 2007

Resilience and response capacity

international

Adaptation and mitigation in agriculture

- Large synergies between adaptation and mitigation
- Further benefits for other ecosystem services (e.g., water quality)
- But also trade-offs => full production cycle to be considered
- Similar to REDD: MRV, leakage, additionality, permanence
- Adaptation and mitigation mostly discussed seperately

Synergies and trade-offs between C sequestration and food security

Food Security Potential

Food Security Potential: High Carbon Sequestration Potential: Low

- · Expand cropping on marginal lands
- Expand energy-intensive irrigation
- Expand energy-intensive mechanized systems

Food Security Potential: Low Carbon Sequestration Potential: Low

- Bare fallow
- Continuous cropping without use of organic or inorganic fertilization
- Slope ploughing
- Over grazing

Food Security Potential: High Carbon Sequestration Potential: High

- · Restore degraded land
- Expand low energy-intensive irrigation
- · Change from bare to improved fallow
- Agro-forestry options that increase food or incomes
- Conservation tillage and residue management, limited trade-offs with livestock
- Improved soil nutrient management

Food Security Potential: Low Carbon Sequestration Potential: High

- Reforestation/afforestation
- Restore/maintain organic soils
- Expand biofuel production
- Agro-forestry options that yield limited food or income benefits
- Conservation tillage and residue management, large trade-offs with livestock

Carbon Sequestration Potential

Source: FAO, 2009

Conservation agriculture

- Minimum soil disturbance; crop rotation; permanent soil cover
- Increased soil C sequestration and yields?
- Redistribution of soil C compared to conventional agriculture
- Adverse impacts through herbicide application
- Or weeding done manually => additional work load
- Yields may decrease in the beginning
- Conflicts over crop residues

Implementing agricultural mitigation in SSA

- deficencies in agricultural knowledge, low degree of mechanization, low input of improved seed varieties and fertilizers
 => low productivity
- large diversity of agroecosystems (=> green revolution)
- poor access to input and output markets
- education => diversification => more investment in sustainable agricultural practices => mitigation

- Intensification on existing agricultural land or expansion to previously unused land?

Agricultural mitigation in the UNFCCC

8,

- Agriculture largely excluded from CDM
- High fragmentation, high transaction costs
- Unclear property rights and access to land
- Up-front costs for additional investments => widening the gap between poor and wealthier groups
- NAMAs to explore "low-hanging fruits"
- No linkages between NAPAs and NAMAs

Agricultural mitigation in NAMAs

Country	Livestock	Crop land	Waste	Peat land
CAR	-	Crop improvement	Crop res., animal waste	-
DR. Congo	-	 1.Conservation farming 2. N-fixing species 3. Irrigation 	-	-
Ivory Coast	-	Conservation farming	-	-
Ethiopia	-	 Agroforestry Soil C-sequestration 	-	-
Eritrea	-	Soil C-sequestration	-	-
Ghana	-	 Conservation tillage Efficient fertilizer app Crop improvement 	Crop res. and animal waste	Improved mgt.
Madagascar	 1. Improved livestock mgt. 2. fodder crops 	 1.Efficient fertilizer appl. 2.Crop improvement 	-	-
Sierra Leone	-	 Conservation farming Agro-forestry 		

Conclusions and recommendations

- large importance of agriculture for poverty reduction
- Go for comprehensive agricultural strategies
- Collaborative adaptive management and social learning
- Higher priority of agriculture is needed
- Capacity building for flexible institutions (horizontal and vertical)

www.die-gdi.de

C. Ifejika Speranza: Resilient adaptation to climate change in African agriculture

B. Horstmann: Framing adaptation to climate change: a challenge for building institutions

Thank you for your attention!

Marcus Kaplan - German Development Institute Marcus.Kaplan@die-gdi.de +49 - (0)228 - 94927293

© 2010 Deutsches Institut für Entwicklungspolitik (DIE)