Climate Adaptation for Nature and People: Biodiversity Conservation and Climate Change Adaptation in China

Dr. Chen Ai <u>achen@tnc.org</u> Climate Change Adaptation Manager

Major Climate Impact in China

Climate Change Puts People at Risk

by altering systems and making vulnerable the lands, waters and natural resources on which the health and livelihood of the world depends

Currently: Adaptation in Water, Agriculture, food security> Biodiversity

Protecting Nature

Protecting People

Ecosystem Based Adaptation Processes in China

Climate Change

Climate change trends

Impact on nature and people

Resilient Nature

How to effectively conserve nature and enhance resilience under climate change?

Resilient People

How to apply nature-based solutions to reduce the reverse climate change impacts on people?

PAST work: Is biodiversity affected by climate change? How?

Observed Impact on Alpine system

Projected sea level rise in Estuary of Shanghai

	Temp Chg. °C	Temp Chg. °C	Sea level rise (m)		
Scenario	Best estimation	Interval			
B1	1.8	1.1 – 2.9	0.18 - 0.38		
A1B	2.8	1.7 – 4.4	0.21 - 0.48		
A2	3.4	2.0 - 5.4	0.23 - 0.51		

Sea level rising	Flooded Area (ha)	Percentage of current Nature Reserve area		
100 cm	2,771	48%		
80 cm	2,244	39%		
60 cm	1,703	30%		
40 cm	1,166	20%		
20 cm	641	11%		

Projected impact on conifers and Golden Monkey

Distribution of Evergreen Needleleaf Forest

CURRENT work: Build up climateresilient conservation network

China's 32 Priority Conservation Areas (PCAs)

National Biodiversity Strategy and Action Plan 2011-2030 (NBSAP) was released by State Council on Sept. 15, 2010, in which 32 **Priority Conservation** Areas (PCA) were identified.

Ne Nature

1961-2008

Precipitation Variability of Priority Conservation Areas, 1961 - 2008

Aridity Change of Priority Coservation Areas, 1961 - 1980 & 1980 - 2008

aridi

2000-2050

Annual Mean Temperature Change of Priorty Conservation Area. Baseline - 2050

14444444444444444444444444

Annual Precipitation Change of Priorty Conservation Area. Baseline - 2050

Aridity Change of Priority Coservation Areas, Baseline - 2050

2000-2100

Annual Precipitation Change of Priorty Conservation Area. Baseline - 2100

Aridity Change of Priority Coservation Areas, Baseline - 2100

Va	lue	zone_name	value	zone_name
	0	Tropical rain forest	19	Warm temperate thorn scrub
	1	Tropical wet forest	20	Warm temperate desert scrub
	2	Tropical moist forest	21	Warm temperate desert
	3	Tropical dry forest	22	Cool temperate rain forest
	4	Tropical very dry forest	23	Cool temperate wet forest
	5	Tropical thorn woodland	24	Cool temperate moist forest
	6	Tropical desert scrub	25	Cool temperate steppe
	7	Tropical desert	26	Cool temperate desert scrub
	8	Subtropical rain forest	27	Cool temperate desert
	9	Subtropical wet forest	28	Boreal rain forest
	10	Subtropical moist forest	29	Boreal wet forest
	11	Subtropical dry forest	30	Boreal moist forest
	12	Subtropical thorn woodland	31	Boreal dry scrub
	13	Subtropical desert scrub	32	Boreal desert
	14	Subtropical desert	33	Subpolar rain tundra
	15	Warm temperate rain forest	34	Subpolar wet tundra
	16	Warm temperate wet forest	35	Subpolar moist tundra
	17	Warm temperate moist forest	36	Subpolar dry tundra
	18	Warm temperate dry forest	37,38, 39	Polar desert

Holdridge life zone projections based on A1B scenario of RegCM3 and A1B,A2,B2 of PRECIS RegCM3:(A,E,I);PRECIS:(B,C,D,F,G,H,J,K,L);Present:(A~D);2050S:(E~H);2100S:(I~L);A1B:(A,B,E,F,I,J);A2:(C,G,K);B2:(D,H,L)

			2050		2100	
ID	Name	Sensitivity	Exposure	Veg.change	Exposure	Veg.change
1	Daxinanling Area	Ш	Ш	1	Ш	Ш
2	Xiaoxinanling Area	IV	Ш	Ш	Ш	II
3	Three Rivers Plain Wetland	Ш	IV	IV	IV	IV
4	Changbai Mountainous Area	IV	Ш	III	Ш	l.
5	Songnei Plain Wetland	Ш	Ш	IV	Ш	Ш
6	Hulun Buir Grassland	Ш	ш	IV	IV	IV
7	Xilinguole	1	Ш	IV	Ш	П
8	Altai Mountainous Area	IV	1	l.	1	1
9	Tianshan-Southwest Edge of Junggar Basin	IV	Ш	II	Ш	Ш
10	Tarim River Basin Deserts	IV	IV	IV	IV	IV
11	Qilian Mountainous Area	IV	1	I.	l I	Ш
12	West Ordos-Helan-Kageyama Mountainous Area	IV	Ш	Ш	Ш	Ш
13	Qiangtang-Three River Source Area	Ш	1	- I	l I	П
14	Altun Mountainous Area	IV	Ш	III	Ш	Ш
15	Taihang Mountainous Area	Ш	Ш	1	Ш	IV
16	Liupan-Ziwuling Mountainous Area	Ш	IV	Ш		Ш
17	Southest Himalayas Area	Ш	1	- I	l I	1
18	South Hcngduan Mountainous Area	l I	l.	1	l.	l.
19	Minshan-North Hcngduan Mountainous Area	l I	l.	1	l.	L.
20	Qinling Area	Ш	Ш	Ш	Ш	1
21	Western Guangxi-South Guizhou Limeston Area	Ш	IV	III	Ш	IV
22	Wulingshan Mountainous Area	Ш	Ш	II	IV	l I
23	Dabashan Area	Ш	Ш	III	Ш	1
24	Dabieshan Area	Ш	IV	IV	IV	Ш
25	Huangshan-Huaiyu Mountainous Area	1	IV	Ш	IV	Ш
26	Wuyishan Area	1	Ш	Ш	IV	Ш
27	Naling Area	1	Ш	Ш	Ш	Ш
28	Dongting Lake Area	111	IV	IV	Ш	IV
29	Poyang Lake Area	Ш	Ш	IV	П	IV
30	South Central Hainan	Ш	1	П		П
31	Xishuangbanna Area	I	IV	III	IV	IV
	West Guangx32			Ш		

How to achieve effective conservation under climate change in 32 PCAs?

Identify Climate Resilient Conservation Network

• Enlarge protected

area

- Redundancy
- Connectivity
- Evolutionary sites

Future focal species distribution

- Giant Panda
- Asian Black Bear
- Yunnan Golden
 Monkey
- Goral
- Common Pheasant

Future ecosystem types distribution

629 250 2 500 Kitomete

Corridors -- Regional Flow Linkages

Dark Brown = High Dark Blue = Low

FUTURE work:

- EBA Demonstration In China
- Mainstream EBA in national adaptation strategy policy

Increasing Runoff and Floods

Hypothesis of Change

Variation in precipitation patterns: reduced at some times, increased at others; variation in intensity

Leads to: increased runoff, pollution and sedimentation in water

Leads to flooding, erosion, reduced groundwater recharge, municipal water costs

Socio-Economic Targets at Risk

- Safety of Community Homes and Infrastructure
- Water Quality for municipal supply
- Fisheries
- Water availability in dry season

Floodplain Reconnection in Middle Yangtze River

Science to inform decision making, changes to planning, land-use Strengthen natural protective processes and seasonal wetlands Changes in policy and insurance for risk mitigation and response Enhance upstream collection

Slow runoff to reduce downstream flooding

Decreasing Water Security

Hypothesis of Change

Variation in precipitation patterns: reduced at some times, increased at others; variation in precipitation intensity; increased temperatures

Leads to: drying reservoirs, increased runoff, pollution and sedimentation in water

Leads to flooding, erosion, reduced groundwater recharge, municipal water costs

Socio-Economic Targets at Risk

- Water availability in dry season: cities & agriculture
- River flow and reservoir supplies
- Increasing costs from sedimentation
- Increasing conflict between users

Watershed Protection and Restoration

Place: Black Dragon Pool, Lijiang of Yunnan

- Science to inform management of river flow, land management
- **Strengthen natural processes** to reduce sedimentation, forest cover management
- Watershed management for dry season flow, groundwater recharge, meadows
- Fire for Water, reduce risk of catastrophic fire adding sedimentation

Thank you! Questions