

Nitrification inhibitors:

- slow conversion of NH₄⁺ to NO₃⁻
- NO₃⁻ that is the substrate for denitrification
- Less denitrification reduces the pool of NO₃⁻ and therefore the amount of denitrification
- Example: Nitrapyran, but these are costly
- Slow release formulations:
 - Release N closer to the time needed by the plants so more is taken up and less available for denitrification

Variable Rate Application

Nitrification proces

- Precision farming
 - Satellite based global positioning system (GPS)
 - Global information system maps (GIS)
 - Crop response models
 - Computers
- Allows higher applications to parts of the field where a response is likely, and less in other areas
- Better total yield response for fertilizer added
- Less fertilizer added

Fertilizer Placement

- Banded or injected next to rows
- Crop roots will encounter this sooner and miss less
- Initial banding and subsequent side dress (timing) can improve efficiency

Manure Management

- Know the nutrient level in the manure and do not over apply (especially N)
 - Match manure testing, soil testing, crop requirements, so less N is applied
- Added organic matter may contribute to soil organic matter thereby sequestering carbon into soils

Water Management

Good drainage leads to soils that are low in oxygen less often, so less denitrification
Avoiding over irrigation can have the same effect

Tillage Practices

- Reduced tillage, no-till, reduction in summer fallow
- Soil less "stirred" by tillage
- Less air into the soil so less organic matter break down
- Soil particles larger so less surface area for microbes to work on
- Soil organic matter increases due to deposited crop residue
- Net transfer of carbon (CO₂) from the air to the soil

Reforestation

- Trees constitute standing biomass that contains carbon
- Poor land could be reforested
- Wind breaks and shelter belts are also a form of this
- Considerable standing biomass and below ground carbon in extensive root systems

No-Til

Cover crops

- Grow in fall after main crop harvested
- Reduce soil erosion (top soil contains most of the soil organic matter)
- Because of photosynthetic activities, transfer carbon from the atmosphere to the soil
- Can be N fixing

Plow in later in spring so less N denitrified

Rotations

- Inclusion of deep rooted perennials (e.g. alfalfa)
 - Deep root system adds carbon to soil at depth
 - where there is less microbial activity
 - Roots are more lignified so break down more slowly

Catch crop

- As is perennial, no tillage for several years
- Reductions in summer fallow

Bio-fuel Considerations

- Benefits of bio-fuels:
 - Sustainable energy source
 - No net CO₂ emissions
- Problems:
 - Crop plants designed for food production and have small positive or even negative life cycle analyses for energy and greenhouse gases
 - A large part of this is related to nitrogen: fossil fuel use during manufacture on the energy side;
 CO₂ release during manufacture, and N₂O release from fields on the greenhouse gas side

- Winter wheat, with its higher yield potential, could move into areas where spring wheat is now produced
- Cultivars with longer times to maturity (and therefore greater yield potentials) can be grown
 - This will bring management changes such as earlier seeding
- In the mid latitudes the increase in season lengths may be sufficient to allow the adoption of double cropping practices

Fertilizer Use Will Change

- In areas where crop production potential is increased higher levels of fertilizer application will be required to meet the potential
- The increases will be greatest for N

People Will Move

- Northward migration of crop production
- Will require the development of rail infrastructure in the porth, and probably the a

- north, and probably the ability to ship more grain out of the Port of Churchill
- The new area to the North is as large as the one going out of production, but the soils are younger and less fertile

Tillage Systems

- With warmer soils no-till and minimum-till systems will become more feasible
- These systems will store soil water better, and store soil carbon better, with the latter leading to less potential for soil erosion

Irrigation

- In some areas there will be the potential to expand the use of irrigation
 - infrastructure costs
- However, in others, as river flows decrease (more evaporation and glacier disappearance), irrigation use will decrease
- The competition between urban and agricultural uses of water will intensify

Some Others

Policy

 Policies that promote the production of established crops in a given area must be made flexible to allow the introduction of new crops and cropping practices

General Background

- As part of a research effort to use the biosphere to manage Canada's greenhouse gas emissions we have established a national research network
 - 55 researchers at 18 universities
 - \$1.2 million per year for 5 years
 - Premise that plants have untapped in this regard
- The focus is R & D
- The approach is networking

