Mitigation and adaptation using agriculture in Kenya

Presented by the Government of Kenya in cooperation with The World Bank

> United Nations Climate Change Conference Poznań, Poland - COP 14 1-12 December 2008

Climate change management in Kenya

- Climate change technology needs assessment
- NEW Climate change management centre
- CDM project pipeline in the energy and land use sector e.g. *Mumias* Cogen, *KenGen* geothermal or *Green Belt Movement* AR projects
- High expectations from integrated agricultural land management mitigation & adaptation projects – 80 % of Kenya's population which is involved in agriculture & threatened by climate change would benefit –

Objectives of the side event

- Awareness raising for GHG mitigation potential in the agriculture sector (plus adaptation synergies)
- Share experiences from agricultural mitigation pilot projects in Kenya & presenting
 methodology approaches
- Discuss role for agricultural land management in future compliance and voluntary markets

Side event program

Welcome note	Government of Kenya	Permanent Secretary, Ministry of Environment and Mineral Resources		
Moderator	ohannes Woelcke, World Bank Africa Region - Agriculture & Rural Dev., htroduction to the program & highlighting global mitigation potential			
Speakers	Timm Tennigkeit, Chinese Academy of Sciences/ ICRAF	Steps involved to develop & implement agricultural carbon finance projects		
	Neil Bird, Joanneum Research	A baseline & monitoring methodology for agricultural land management activities		
	Ken Newcombe VCS Board, C-Quest Capital	Why do we need to develop credible VCS agricultural methodologies for the US and the CDM?		
	Amos Wafula Wekesa, SCC-VI Agroforestry	SALM practices on small-holder farms in Kenya to increase staple food production & generate carbon revenues (introduction & film)		
Panel discussion	Kathleen Schepp, GTZ	Climate change adaptation & mitigation synergies in smallholder agriculture		
	Philip Valentine, ECOM Agroindustrial Corp	Carbon finance in smallholder coffee farms, producing speciality coffee & carbon credits		
	Closing remarks			

Global economic mitigation potential for different sectors (different carbon prices)

Mitigation potential: African agriculture

	Total Agric. Land (Mha)	Mitigation Potential by 2030		
		Technical (t CO2e/ha/yr)	Technical (Mt CO2e / yr)	Economic at 0-20\$/ton CO2eq (Mt CO2e / yr)
East Africa	364	1.10	400	109
Middle Africa	177	1.02	180	49
North Africa	113	0.80	90	25
South Africa	138	0.58	80	22
West Africa	302	0.73	220	60
Total	1093	0.89	970	265 (27%)

Source: IPCC, 2007.

Note: Coarse estimates calculated from data provided by Smith et al (2008) (for SRES scenario B1).

Mitigation potential - Agriculture

Considering that not all agricultural area will be subject to SLM activities *(physical constraints-e.g. land suitability and social constraints-e.g. adoption rate)* and that the carbon price is actually <20 \$/ton CO2e *(economic constraints)*, we have calculated the <u>realistic mitigation potential for Africa</u>

Tota	al Agric. Land	Technical Potential		Economic Potential
1093 Mha		0.89 t CO2eq/ha/yr	970 Mt CO2eq / yr	265 Mt CO2eq / yr (~27%)
ag	ning on 10% of all pric. area SLM es will be adopted			
↓	109 Mha 🔔	0.89 t CO2eq/ha/yr	97 Mt CO2eq / yr	▶ 26 Mt CO2eq / yr (~27%)
		Model is not considering above ground carbon mitigation potential (estimate: 0.5 tCO2e/ha/yr	Assuming the economic potential is only 10% of the technical potential, due to low carbon prices	
				9.7 Mt CO2eq / yr (~10%)