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Abstract: 

Due to its high short-term variability, solar-photovoltaic power in isolated industrial grids faces a challenge 

of grid reliability. Storage systems can provide grid support but come at a high cost that requires carefully 

evaluating power capacity needs. Battery sizing methodologies are now the focus of many studies, with a 

global upward trend in detailed modelling and complex optimization. However, although solar variability 

can be the source of uncertainties and battery oversizing, it rarely features as an input in scenarios. This 

study proposes several solar variability scenarios thanks to the wavelet-variability model and two variability 

metrics. These scenarios are employed as inputs in two sizing methodologies to compare the resulting 

battery capacity and draw conclusions on the role of modelling complexity and scenario identification. 

Results show that neglecting the photovoltaic power plant smoothing effect leads to an overestimation of 

the battery power support of 51%. In the other hand, complex dynamic modelling may reduce the battery 

power capacity by 25%. The economic analysis shows that a proper combination of variability scenario 

and battery sizing methodology may reduce the levelized costs of electricity by 3%. 

Highlights 

• Modelling photovoltaic plant geographical smoothing avoids over-investments. 

• Identifying variability scenarios is crucial to ensure continuity of supply. 

• Combining ramp-detection and variability index spares the use of day-long timeseries. 
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Abbreviations    

WVM  Wavelet Variability Model   

PV  Photovoltaic  

RDA Ramp detection algorithm 

VI Local variability index 

GHI Global Horizontal Irradiance 

CSI Clear sky irradiance 
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LCOE Levelized costs of electricity 

CAPEX Capital expenditure 

OPEX Operational expenditure 

Symbols    

𝑇𝑅 Time-period of PV drop 

Δ𝑃𝑅 PV power loss within time interval 

𝐿𝐺𝐻𝐼  Euclidean length of GHI curve 

Δ𝑡 GHI data sampling interval 

𝑃𝑃𝑉 PV power 

𝑟𝑟𝑃𝑉 PV power ramp rate 

𝑃𝑓𝑜𝑠𝑠𝑖𝑙  Fossil generation active power 

𝑃𝐿 Electrical load active power 

𝑃𝑢𝑛𝑚𝑒𝑡 𝑙𝑜𝑎𝑑  Unmet load power 

𝑟𝑟𝑓𝑜𝑠𝑠𝑖𝑙 Fossil generation total ramp rate 

𝑃𝑃𝑉
𝑟𝑎𝑡𝑒𝑑  PV plant installed capacity 

𝜂𝑃𝑉𝑖𝑛𝑣 PV inverter efficiency 

Δ𝑓 Grid frequency shift 

Δ𝑃𝑚𝑒𝑐 Mechanical power 

𝑀 Inertia constant 

D Damping constant 

𝐾𝑝, 𝐾𝑖, 𝐾𝑑 Battery controller constants 

𝐶𝑏𝑎𝑡 Battery power capacity 

 𝑃𝑏𝑎𝑡  Battery active power 

𝑃𝑏𝑎𝑡
∗  Battery power order  

𝜂𝑖𝑛𝑣 , 𝜂𝑏𝑎𝑡 Battery and inverter efficiencies 

𝑃𝑏𝑎𝑡
𝑚𝑖𝑛, 𝑃𝑏𝑎𝑡

𝑚𝑎𝑥 Minimum and maximum battery power 

𝐸𝑏𝑎𝑡 Battery energy 

𝑆𝑂𝐶𝑚𝑖𝑛, 𝑆𝑂𝐶𝑚𝑎𝑥 Minimum and maximum battery state-of-charge 

𝐸𝑏𝑎𝑡
𝑚𝑎𝑥 Maximum battery energy 

𝛿𝑡 Simulation solving interval 

𝜈𝑋 Power quality function 

𝛼𝑖 , 𝛽𝑖  Variables for battery dynamic sizing optimization 

  

1 Introduction 
Recent climate change trajectories and increasing political pressure over carbon legislation have made the 

establishment of an efficient low-carbon industry a priority. In its 2019 Outlook, the International Energy 

Agency (IEA) highlighted that powering facilities with low-carbon electricity constitutes one the main levers 

to achieve the industry’s sustainable transition (1). 

In developing countries with unreliable grids or large off-grid areas, industrial facilities must rely on on-

site generation(2) and thus need to install their own renewable power plants to reduce their carbon 

emissions (3).  In these applications, large-scale industrial microgrids will therefore play a key role. 

So far, the need for affordable, reliable electricity has motivated the use of conventional fossil generation 

(gas-turbine or internal combustion engines) for electricity production. However, following the sharp drop 

in renewable electricity production costs, hybrid power plants featuring fossil generation and renewable 

resources are now drawing the attention of the scientific community since. Varying applications are found 

in the literature, from industrial microgrids (4) to water-treatment plants (5) and even future oil and gas 

platforms(6). Among the wide variety of renewable sources, solar PV is one of the most promising due to 

its fast development.  

1.1 Challenge of solar PV integration in off-grid industrial power plants 
The concept of industrial microgrids has not been extensively covered in the literature to date. The main 

sectors requiring such systems are the mining industry (7), manufacturing industry (8,9), water treatment 

(5) and upstream oil and gas (6). The main characteristics of such systems are:  



- High power ratings compared to conventional microgrid systems (from hundreds of kW to several 

hundreds of MW).  

- Deterministic load profiles depending on the production schedule of the factory with a generally 

low level of variability. 

- Strict reliability specifications regarding electricity supply for economic and safety reasons. 

- Centralized ownership and operation for all production units. 

Large scale integration of solar PV power with high short-term variability raises questions about the 

reliability and continuity of supply. As highlighted in (10), fossil-fuel generation lacks flexibility (long start-

up time, relatively low ramp-rate, etc.) and limits the renewable energy penetration rate. Additionally, 

integration of renewable resources contributes to reduce the mechanical inertia of the system which may 

lead to unstable grid and poor resilience to solar perturbation (11).  

Storage systems are an effective way to compensate the lack of flexibility of fossil generation (12). Fast 

response technologies are the most suited to provide grid support, with an advantage for lithium-ion 

technologies considering recent projects and decreasing cost (13). However, storage systems significantly 

impact a plant’s economic performance, which is why a deep understanding of solar variability is of 

paramount importance to support the development of industrial power plants. 

1.2 Assessment of solar variability and its impact on power system 

Accurate assessment of solar resources is a topic of growing importance for autonomous energy systems 

developers. Many software systems now use solar production profiles to determine optimal investments 

in components (14). In (15) for example, the battery power capacity is calculated using hourly on-site 

timeseries in order to compensate the lack of generation.   

Since grid reliability is a key issue, a deeper analysis must be carried out (16). As frequency fluctuation 

occurs at short timescales due to instant power imbalances (17), solar short-term ramps have a strong 

impact on the system. Hence, defining solar variability scenarios is critical to determine the size of the 

battery system.  

The production variability of photovoltaic (PV) systems is a complex phenomenon that is still being 

investigated by the scientific community to provide reliable metrics (18) and forecasts (19). Atmospheric 

conditions affect clouds’ size, opacity and altitude, and also their horizontal and vertical movements. In 

addition, a site’s characteristics, such as its orography, plays an important role in cloud dynamics (18). This 

makes the adaptation of variability indexes from one site to another almost impossible. On the other hand, 

high on-site resolution irradiance data are rarely available, making it necessary to conduct measurement 

campaigns whenever possible.  

PV system size also plays a role in the variability since clouds may cast partial shade on the surface of large 

plants. In (20) it was shown that the power profile entirely follows the irradiance profile for time-ranges 

greater than 10 minutes. As reported in (21), short-term variability is affected by the size, shape and 

scattering of a plant. For plants of several megawatts, 1-s, 10-s, and 1-min ramps can be approximately 

60%, 40%, and 10% smaller, respectively, than those measured by a pyranometer. 

Based on the work of (22), it is possible to simulate the effect of a plant’s geometry on a single-sensor 

timeseries thanks to the Wavelet Variability Model (WVM). The risk of solar power ramp can then be 

evaluated with more accuracy.  

Meanwhile, significant research has studied sizing technique and grid modelling with the aim of improving 

and optimizing the sizing of components (23). Battery sizing techniques range from pure energy 

compensation to maintain the power balance to a complex representation of the grid dynamics and 

frequency fluctuations (24). On the other hand, (25) highlighted that the relevance of performing highly 

detailed grid simulation can be challenging when the solar input scenarios have such high uncertainties. 



To the best of the authors’ knowledge, no quantitative study has been performed to date to evaluate the 

role of accurate solar variability scenarios and storage sizing complexity in final battery capacity 

requirements. Additionally, the financial implications of such aspect remain unsettled in the literature. 

To address this question, the paper is organized as follows. In section 2, we propose a methodology to 

identify a solar variability scenario from a high-resolution irradiance dataset. Then, we apply the WVM to 

simulate the smoothing effect of the PV power plant. Two metrics are proposed and combined to identify 

day-long and isolated scenarios. In section 3, we present two battery sizing methodologies with a theoretical 

background on power systems: power adequacy and dynamic modelling. These two methodologies are 

then applied in section 4 using a case study to quantify the role of the variability scenario and sizing method 

in the battery capacity requirement. Finally, we draw conclusions in section 5. 

2 Addressing PV transients 

2.1 Methodology and data 

As stated in the introduction, it is always preferable and more accurate to conduct an on-site measurement 

campaign. Yet, in the early stages of a project, the high costs and feasibility issues related to installing and 

operating a network of sensors prevent developers from obtaining reliable data on-site. A less costly 

approach is to use a worst-case referenced dataset. Thanks to the work carried out in (26), where solar 

variability zones were evaluated from a set of measurements of nine power plants, the area of Hawaii was 

found to be one of the most variable in the world in terms of solar irradiance. This is also confirmed by 

the results presented in (27). Taking a worst-case study perspective, in this paper we propose to use the 

data collected by NREL in Oahu (28) for variability analysis and battery sizing. Even though the 

meteorological behavior cannot be generalized to all regions in the world, we believe that such highly 

variable area like Hawaii can be an interesting benchmark for the scientific community. 

Figure 1 shows the solar variability scenario identification procedure. After identifying a suitable dataset, 

the WVM is applied to the 1-second irradiance profile to simulate the smoothing effect of a 50MW solar 

power plant subject to a cloud speed of 20m/sec.  

Then, daily variability indexes are calculated to identify the most variable day. In this paper, we propose 

two indicators: the number of ramps detected using a ramp-detection algorithm (RDA) and the Variability 

Index (VI) derived from the work of J. Stein et al. (29). 

Finally, we extract solar input scenarios for battery sizing from the most variable day. For the sake of clarity 

and simplicity, it is more convenient to consider solar variability events as typical solar drops (% of PV 

power in a defined time interval) rather than using day-long timeseries. Thanks to the RDA, isolated ramp 

events are extracted from the day-long timeseries and are used as alternative variability scenarios. The 

uncertainties in the measurement of solar irradiance have been neglected since the information was not 

made available by data provider. 

 

Figure 1  Scenario identification process 



2.2 Quantifying solar variability  

2.2.1 Ramp detection algorithm (RDA) 
Identifying solar ramps is a key step in solar variability analysis. Numerous methods can be implemented 

with varying levels of complexity. In (21), the solar profile 1-second derivative is used to evaluate the ramp 

rate. This method can be extended to a larger fixed-time window, but this leads to neglect any change in 

irradiance within the time interval. In this case, such a method cannot be implemented because the time-

scale of the solar ramp is expected to vary between raw pyranometer data and WVM filtered data. In (30), 

a recognition method for irradiance transition was proposed based on moving averaged variations. 

Similarly, in this paper we propose to detect solar ramps thanks to a gradient-based adaptative sliding 

window. 

The RDA detects each ramp with a higher gradient than the trigger value 𝐴 (in W.m
-2

.s
-1

). The detected 

ramp, which is then labelled by its index 𝑅, has two attributes:   𝑇𝑅 the duration of the ramp and  Δ𝑃𝑅 the 

power loss within the interval. The algorithm is provided in annex. 

2.2.2 Variability index (VI) 
In this study, we employ a variation of the variability index (VI) proposed by J. Stein et. al.  in (29). The 

original index is calculated following Eq. 1 and can be interpreted as the ratio of the pyranometer global 

horizontal irradiance (GHI) measurement curve length over the clear-sky irradiance (CSI) curve length. 

The VI calculation proposed in this paper (Eq. 2) is very similar as it only replaces clear-sky irradiance by 

the hourly averaged GHI, with the aim of avoiding the use of clear-sky irradiance estimation models that 

may introduce additional bias. 

 

𝑉𝐼 =
∑ √(𝐺𝐻𝐼𝑡+1 − 𝐺𝐻𝐼𝑡)2 + Δ𝑡2𝑡𝑓

𝑡=𝑡0

∑ √(𝐶𝑆𝐼𝑡+1 − 𝐶𝑆𝐼𝑡)2 + Δ𝑡2𝑡𝑓

𝑡=𝑡0

 Eq. 1 

 

 

 
𝑉𝐼 =

𝐿𝐺𝐻𝐼

𝐿𝐺𝐻𝐼̅̅ ̅̅ ̅̅
 Eq. 2 

 

𝐿𝐺𝐻𝐼 and 𝐿𝐺𝐻𝐼̅̅ ̅̅ ̅̅  are the euclidean dictance of the 1sec GHI timeseries and hourly averaged GHI timeseries 

respectively. 

 

𝐿𝐺𝐻𝐼 =  ∑ √(𝐺𝐻𝐼𝑡+1 − 𝐺𝐻𝐼𝑡)2 + Δ𝑡2

𝑡𝑓

𝑡=𝑡0

 

 

Eq. 3 

 

 

𝐿𝐺𝐻𝐼̅̅ ̅̅ ̅̅ =  ∑ √(𝐺𝐻𝐼ℎ+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐻𝐼ℎ

̅̅ ̅̅ ̅̅ ̅)2 + 36002

ℎ𝑓

ℎ=ℎ0

 

 

Eq. 4 

 

Figure 2 shows three irradiance profiles from the dataset with a VI value and the number of detected 

ramps. This shows that the number of ramps and VI in an RDA can give insight on the level of variability. 

The value of the VI are different from the indexes processed by Stein et. al. in (29), which range from 0 

to 15. This is due to the fact that 1-min resolution data are used in (29), whereas 1-second data are used 

in this study, which obviously gives a longer GHI curve.   



 

Figure 2 VI and Nramp index for 3 days in the Hawaii data-set 

2.3 Solar variability scenario identification 
 

We identify solar variability scenarios thanks to the maximum number of daily ramps detected by the 

RDA and the maximum VI over 1 year of data provided by NREL. The time-period goes from 2010-10-

01 to 2011-09-30 with measurements from 5am to 8pm and a 1-second sampling time. Ramps and VI are 

calculated for each day of the dataset, allowing the selection of worst-case scenarios. Figure 3 shows the 

ramp and VI distribution for each day.  Table 1 shows the resulting metrics of RDA and VI for the most 

variable days identified. RDA and VI give the same worst-case day for the pyranometer data. However, 

the results reveal that the WVM has a clear impact on variability metrics, since the number of ramps 

dramatically drops from 1,359 to 257 for the 2011-07-08 timeseries. Additionally, it is worth mentioning 

that we do not obtain the same day-long scenario with the VI qualification after WVM-smoothing as 

compared to RDA qualification.  

 

   

    

 
 
   
 
  

 
 

                     

 

   

    

 
 
   
 
  

 
 

                         

                                        
 

   

    

    

 
 
   
 
  

 
 

                         



 

 

Figure 3 Scatter plot of detected ramp versus VI for all days between 2010-10-01 and 2011-09-30 using raw-
pyranometer timeseries (up) and WVM smoothed timeseries (down). The two selected scenarios are highlighted 
in the figure. 

 

Day-long variability scenarios are identified from these results, henceforth referred to as 𝐷𝑝𝑦𝑟𝑎𝑛𝑜, 𝐷𝑅𝐷𝐴
𝑤𝑣𝑚 

and 𝐷𝑉𝐼
𝑤𝑣𝑚 (see Table 1).  

Table 1 Solar variability indexes of the worst cases for pyranometer data and WVM-smoothed data 

Qualification method RDA VI 

Pyranometer data   

Scenario name 𝐷𝑅𝐷𝐴
𝑝𝑦𝑟𝑎𝑛𝑜

 𝐷𝑉𝐼
𝑝𝑦𝑟𝑎𝑛𝑜

 

Date of worst case 2011-07-08 

VI 238.97 

Number of ramps 1359 

WVM filtered data   

Scenario name 𝐷𝑅𝐷𝐴
𝑤𝑣𝑚 𝐷𝑉𝐼

𝑤𝑣𝑚 

Date of worst case 2011-07-08 2011-03-16 

VI 52.13 74.60 

Number of ramps 257 250 

 

2.3.1 Isolated worst-case PV ramp scenarios 
For the sake of simplicity, it is more convenient to address solar variability as a single worst-case drop event 

characterized by the power loss Δ𝑃𝑅 and the duration of loss 𝑇𝑅 (in seconds). The evolution of the PV 

power is therefore expressed as: 

𝑃𝑃𝑉(𝑡 ) = {
𝑃𝑃𝑉(𝑡0) ∗  (1 − 𝑟𝑟𝑃𝑉 ∗ 𝑡)     𝑖𝑓   0 < 𝑡 < 𝑇𝑅

𝑃𝑃𝑉(𝑡0) − 𝑟𝑟𝑃𝑉 ∗ 𝑇𝑟     𝑖𝑓 𝑡 > 𝑇𝑟
 

Eq. 5 

 

               

  

 

   

   

   

   

    

    

    

 
 
 
 
 
  
 
  
  
 
 
 
  
 
  
 
 
  
 
 

                                                 

          

          

                 

  

 

  

   

   

   

   

   

 
 
 
 
 
  
 
  
  
 
 
 
  
 
  
 
 
  
 
 

                                              

          

          



 

 

Where 𝑟𝑟𝑃𝑉 refers to the ramp rate given by: 

𝑟𝑟𝑃𝑉 =
Δ𝑃𝑅

𝑇𝑅
 

Eq. 6 

 

Thanks to the RDA, ramp characteristics can be easily extracted for each of the day-long worst-case 

scenarios previously defined. Figure 4 shows the highest number of detected ramps for scenarios 𝐷𝑅𝐷𝐴
𝑝𝑦𝑟𝑎𝑛𝑜

 

and 𝐷𝑅𝐷𝐴
𝑤𝑣𝑚. Here again, the impact of the WVM clearly appears, since power drops are significantly 

reduced. We can see this looking for instance at the power drops at 𝑇𝑅 = 15sec, where the power drop 

varies from  about 0.8 p.u for the pyranometer data to nearly 0.2 p.u for the WVM-smoothed data. 

However, for 𝑇𝑅 = 30 s, the power drop is very similar for both datasets. Yet it is not straightforward to 

choose one event from all of the pairs (𝑇𝑅 , Δ𝑃𝑅(𝑇𝑅)) since this will depend on the flexibility of 

conventional generation (see parts 3.1.1 and 3.1.2.1). This study therefore proposes to use the set of pairs 

(𝑇𝑅 , Δ𝑃𝑅(𝑇𝑅)) with 𝑇𝑅 ∈ [0 , 60] as isolated worst-case scenarios. 

 

Figure 4 Highest 𝛥𝑃𝑅  for each 𝑇𝑅  among all detected ramps in each day-long scenario  

 

In the next part of this study, isolated ramps extracted from 𝐷
𝑝𝑦𝑟𝑎𝑛𝑜 

, 𝐷𝑉𝐼
𝑤𝑣𝑚  and  𝐷𝑀𝑅

𝑤𝑣𝑚 are  referred to 

as  𝐼
𝑝𝑦𝑟𝑎𝑛𝑜

, 𝐼𝑉𝐼
𝑤𝑣𝑚   and 𝐼𝑀𝑅

𝑤𝑣𝑚 

2.3.2 Discussion on solar variability scenarios 
In this section, four day-long scenarios and two sets of isolated scenarios were identified. Thanks to the 

variability metrics (number of ramps and VI), it can be noted that the smoothing effect of the power plant’s 

size is substantial. A ratio between 18 and 26 is observed between the VI of GHI timeseries and WVM-

smoothed timeseries. Similarly, the PV power drop of the isolated scenario is reduced by up to 60% 

between the pyranometer and the WVM-smoothed timeseries, which remains consistent with (20) where 

a 40% variability reduction was estimated for the same timescale. 

The worst-case, day-long and isolated scenarios are different depending on the metric used to extract the 

worst day (VI versus maximum ramps). Extracting a worst-case scenario using the maximum number of 

ramps leads to lower isolated drops for time periods above 30 seconds.  This is expected to play a role in 

the battery power support requirement, which will be addressed in the next part. 



The isolated scenario extracted using the RDA shows ramp rates of between 2.25%/sec and 1.25%/sec 

with a maximum 72% drop in nominal power within 42 seconds for the set 𝐼𝑉𝐼
𝑤𝑣𝑚. This is a more 

comprehensive way of characterizing solar variability than considering the entire timeseries since it reduces 

it to a single drop event. However, the accuracy of the method needs to be proven by comparing the 

batteries obtained in both day-long and isolated scenarios.  

The next section will evaluate the battery power requirements for each of the six identified scenarios while 

trying to determine the best way of addressing solar-PV variability.  

3 Battery power capacity sizing 
It has been shown in the previous section that the variability scenario can be significantly altered by more 

accurate modelling of the PV plant thanks to the WVM.  

Similarly, a more detailed modelling of the power plant is expected to reduce the battery requirements for 

off-grid systems. This section will evaluate the battery capacity needs for two variability scenarios and 

compare the gain associated with an increase in model accuracy for the PV plant and the power system. 

This will be compared with the gain obtained by smoothing out the solar variability as well as the 

uncertainty introduced by the choice of variability scenarios.  

3.1 Methodologies for hybrid sizing 

3.1.1 Power adequacy battery sizing 
A comprehensive, effective methodology for determining battery capacity consists in detecting the 

maximum power gap between the load and the generators. In (12), power adequacy battery sizing is used 

to compensate solar ramps when generators have insufficient ramping capacity. Eq. 7 and Eq. 8 show how 

the capacity is calculated while respecting the ramping constraint expressed by Eq. 9.  

𝑃𝑢𝑛𝑚𝑒𝑡 𝑙𝑜𝑎𝑑(𝑡) = 𝑃𝐿 −  𝑃𝑓𝑜𝑠𝑠𝑖𝑙(𝑡) −  𝑃𝑃𝑉(𝑡) Eq. 7 

 

 

𝐶𝑏𝑎𝑡 =   𝑚𝑎𝑥
𝑡

(𝑃𝑢𝑛𝑚𝑒𝑡 𝑙𝑜𝑎𝑑(𝑡)) Eq. 8 

𝑃𝑓𝑜𝑠𝑠𝑖𝑙  (𝑡 + 1) −   𝑃𝑓𝑜𝑠𝑠𝑖𝑙  (𝑡) < 𝑟𝑟𝑓𝑜𝑠𝑠𝑖𝑙  Eq. 9 

 

Where 𝑃𝑃𝑉 is the PV power, 𝑃𝑓𝑜𝑠𝑠𝑖𝑙 is the power generated by fossil units, 𝑃𝐿 is the load demand and  

𝑃𝑢𝑛𝑚𝑒𝑡  𝑙𝑜𝑎𝑑 is the amount of power that cannot be satisfied by the generating units. 𝐶𝑏𝑎𝑡 is the battery 

power capacity obtained by filling the power gap 𝑃𝑢𝑛𝑚𝑒𝑡  𝑙𝑜𝑎𝑑 during the PV power loss. 

The PV power 𝑃𝑃𝑉 is calculated from the PV plant’s rated capacity and GHI value.  A large number of 

advanced models exist to estimate PV plant performance based on optical and thermal simulation, such 

as presented in (31), but require a detailed description of the power plant (module types, electrical layout, 

etc.). In the context of variability analysis, the precise estimation of power absolute value is less important 

than the power dynamics. Hence, a linear model is used in this study as shown in Eq. 10 (a constant value 

of 0.97 is set for 𝜂𝑃𝑉𝑖𝑛𝑣). 

𝑃𝑃𝑉(𝑡) =
𝐺𝐻𝐼

1000𝑊/𝑚²
∗ 𝑃𝑃𝑉

𝑟𝑎𝑡𝑒𝑑 ∗ 𝜂𝑃𝑉𝑖𝑛𝑣 
Eq. 10 

 

The main drawback of this methodology is the risk of capacity overestimation, as pointed out in (12,32). 

The solution proposed by these papers was to allow ramp violation to prevent the sizing from being too 



conservative. However, this method does not allow for fully robust sizing, as it can endanger the quality of 

supply and even lead to electrical blackout for high renewable penetration rates. 

3.1.2 Dynamic electrical modelling 

3.1.2.1 Application of power system theory to hybrid systems 
As stated in the literature review, an increasing level of complexity is observed in battery sizing studies. As 

a matter of fact, models with a low level of abstraction can evaluate power dynamics with more accuracy, 

which may have the effect of reducing the battery power requirements during PV transients. Instead of 

considering a perfect power equilibrium, dynamical studies aim to achieve power quality criteria at short 

timescales thanks to primary reserves (fossil generators and battery systems) whilst ensuring the continuity 

of load supply at longer timescales thanks to secondary and tertiary reserves (33). The role of energy 

storage systems in the frequency regulation paradigm has been extensively studied for large systems (34) 

as well as smaller isolated grids (35). In this study, only primary regulation is addressed. 

For the sake of simplicity, we only address active power balance and frequency regulation here. Eq. 11 

expresses the constraint on the frequency deviation and Eq. 12 formulates the relationship between 

frequency and power imbalance(17). 

|Δ𝑓| < Δ𝑓𝑚𝑎𝑥 Eq. 11 

  

𝑑Δ𝑓

𝑑𝑡
=

Δ𝑃𝑚𝑒𝑐 − (Δ𝑃𝐿 + 𝐷Δ𝑓)

𝑀
 

Eq. 12 

 

When adding the solar PV system, fossil generator and battery system to Eq. 13 , this gives: 

𝑑Δ𝑓

𝑑𝑡
 =

Δ𝑃𝑓𝑜𝑠𝑠𝑖𝑙 + Δ𝑃𝑃𝑉 + Δ𝑃𝑏𝑎𝑡 − Δ𝑃𝐿 − 𝐷Δ𝑓

𝑀
 

Eq. 13 

 

From Eq. 12 and Eq. 13 it can be deduced that taking mechanical inertia, load damping coefficient and 

frequency tolerance into account adds some flexibility to the system. The kinetic energy stored in the 

rotating masses is delivered prior to the primary reserve (fossil generation and battery), the load-damping 

coefficient reduces the electrical power in relation to the frequency drop, and finally the frequency 

tolerance allows small imbalances between the mechanical power and electrical power (see Figure 5 for 



graphical interpretation). This has the effect of reducing the primary reserve capacity requirement and 

therefore the battery power capacity.  

 

Figure 5 Evolution of frequency after a sudden load step (36). 

3.1.2.2 Battery sizing procedure 
The frequency deviation can be simulated to evaluate the minimal battery capacity required to satisfy the 

power quality criteria. This method is employed in several studies such as (37).  Figure 6 shows the power 

system model. PV and load profiles are injected as time-series in the model. 

 

Figure 6 Power system and frequency regulation representation in the Laplacian domain 

A proportional-integral derivative is used for the fossil generation contribution to frequency regulation 

and is expressed in Eq. 14. The control signal 𝑃𝑓𝑜𝑠𝑠𝑖𝑙 
∗ then passes through ramping and power capacity 

saturation blocks to obtain the power production 𝑃𝑓𝑜𝑠𝑠𝑖𝑙 . 

 

 𝑃𝑓𝑜𝑠𝑠𝑖𝑙 
∗ = 𝐾𝑝Δ𝑓 + 𝐾𝑖 ∫ Δ𝑓 + 𝐾𝑑

𝑑 Δ𝑓

𝑑𝑡
 Eq. 14 

 

An “energy-tank” model provides the storage dynamics as expressed in Eq. 17. Eq. 16 expresses the 

inverter charging and discharging efficiencies, whilst Eq. 18 and Eq. 19 provide boundaries for energy 



storage and power delivery. Values of 0.1 and 0.9 have been chosen for SOC boundaries similar to (38). 

The final power 𝑃𝑏𝑎𝑡 delivered by the battery is integrated following Eq. 20.  

 𝑃𝑏𝑎𝑡
∗ = 𝐾𝑏𝑎𝑡 ∗ Δ𝑓 Eq. 15 

 

 
𝜂𝑆 =

1

𝜂𝑖𝑛𝑣𝜂𝑏𝑎𝑡
 𝑖𝑓 𝑃𝑏𝑎𝑡

∗ < 0

𝜂𝑆 = 𝜂𝑖𝑛𝑣𝜂𝑏𝑎𝑡  𝑖𝑓 𝑃𝑏𝑎𝑡
∗ ≥ 0

 Eq. 16 

 

 𝐸𝑏𝑎𝑡(𝑡 + 1) = 𝐸𝑏𝑎𝑡(𝑡) + 𝜂𝑆𝑃𝑏𝑎𝑡
∗ Δ𝑡 Eq. 17 

 

 𝑃𝑏𝑎𝑡
𝑚𝑎𝑥 ≤ 𝑃𝑏𝑎𝑡

∗ ≤ 𝑃𝑏𝑎𝑡
𝑚𝑖𝑛 Eq. 18 

 

 𝐸𝑏𝑎𝑡
𝑚𝑎𝑥𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝐸𝑏𝑎𝑡 ≤ 𝐸𝑏𝑎𝑡

𝑚𝑎𝑥𝑆𝑂𝐶𝑚𝑎𝑥 Eq. 19 

 

 𝑃𝑏𝑎𝑡 =
 Δ𝐸𝑏𝑎𝑡

𝛿𝑡
  Eq. 20 

 

Once the frequency timeseries has been simulated thanks to the dynamic model, an optimization method 

is necessary to obtain the minimal battery capacity. Several methods may be used with varying levels of 

complexity. For example, the authors in (39)  implemented an analytic optimization with a fixed interval 

and a particle swarm optimization procedure to reduce computational time. In this paper, a bisection 

method is employed to evaluate the minimal battery requirements by running successive simulations and 

varying storage capacity. This method can reduce the number of iterations as compared to fixed-interval 

research. The searching interval is divided by 2 at each iteration until the final tolerance 𝜖 is reached. The 

bisection method aims at minimizing the battery capacity 𝑃𝑏𝑎𝑡 by evaluating the power quality function 

𝜈𝑃𝑏𝑎𝑡
  defined by Eq. 21.  Since 𝜈𝑋 is expected to monotonically decrease, more complex optimization 

methods are not required to guarantee the convergence, although they may accelerate the solving time.  

𝜈𝑋 = Δ𝑓𝑚𝑎𝑥  − min(𝛥𝑓𝑠𝑖𝑚 |  𝐶𝑏𝑎𝑡 = 𝑋) Eq. 21 

Where 𝛥𝑓𝑠𝑖𝑚 is the frequency timeseries obtained by simulating the system with a battery power capacity 

𝐶𝑏𝑎𝑡. The optimization procedure is shown in Annex. The searching interval is formed by [𝛼𝑖, β𝑖], while 

𝛼0 and 𝛽0 are the lower and upper bounds for the optimization. The initial upper bound 𝛽0 =   𝐶0 is 

given by the battery capacity calculated by the power adequacy method for the same scenario. 

 

3.2 Conclusion on sizing methodologies 
Power adequacy and dynamic sizing procedures have been described previously in this section. Thanks 

to the modelling of mechanical inertia and damping, as well as frequency shift tolerance, the battery 

capacity requirement is expected to be lower for dynamic sizing than for power adequacy. This makes it 

necessary to increase the level of complexity of sizing procedures and models. However, the scenarios 

identified in section 2 show various levels of perturbation. The wrong choice of variability scenario may 

eradicate the gains obtained by implementing a complex sizing strategy. In the next section, we employ 

the six scenarios identified as input for both sizing methodologies and compare the resulting battery power 

capacity. The overall process is shown in Figure 7. 



 

Figure 7 Summary of battery capacity requirement calculation from variability scenario identification to sizing 
methodology 

 

4 Application to a case study  
The proposed sizing methodologies were applied to the case of a hybrid power plant composed of four 

fossil generators of 50MW and a total electrical load of 100MW. As mentioned in section 1.1, the 

electrical demand of industrial power systems is less variable than conventional load demand in residential 

or tertiary microgrids. Moreover, due to the types of equipment generally installed (pumps, heaters, 

drivers), load variations are expected to occur at larger time scales than solar variations.  Hence, the load 

profile is considered as constant in the case study. A generic lithium-ion battery is used with a 1C (1kWh-

1kW) power ratio. The plant dynamics was simulated using MATLAB/Simulink.  

Table 2 List of parameters used for simulation 

Parameters Unit Value 

Power plant parameter   

𝒓𝒓𝒇𝒐𝒔𝒔𝒊𝒍 MW/sec 0.433 

𝑷𝑷𝑽
𝒓𝒂𝒕𝒆𝒅 MW 50 

𝑷𝑳 MW 100 

   

Fossil generator controller    

𝑲𝒑 - -0.2 

𝑲𝒊 - -0.05 

𝑲𝒅 - -0.2 

   

Power system constants   

M Sec 11.02 

D - 0.02 

𝒇𝒏𝒐𝒎 Hz 50 

𝚫𝒇𝒎𝒂𝒙 % of 𝑓𝑛𝑜𝑚 0.05 

   

Battery controller   



𝑲𝒃𝒂𝒕 - 40 

𝜼𝒊𝒏𝒗 - 0.98 

𝜼𝒃𝒂𝒕 - 1 

 

4.1.1 Power adequacy sizing 
The power adequacy sizing was applied to the scenarios presented in part 2.3.1. The set 𝐼𝑝𝑦𝑟𝑎𝑛𝑜 gave a 

maximum power capacity requirement of 43.96MW which was found with the pair (𝑇𝑅 = 6𝑠, Δ𝑃𝑅 =0.93 

p.u). The 𝐼𝑀𝑅
𝑤𝑣𝑚 gave a power capacity requirement of 10.25 MW against 21.34 for 𝐼𝑉𝐼

𝑤𝑣𝑚 (see Table 3). 

This results show that maximum battery capacity is not obtained with the same ramp duration, which 

justifies the use of a whole set of ramps. The power dispatch is plotted in Figure 8 for two isolated 

scenarios.  

Table 3 Final battery capacity for isolated scenarios using power adequacy sizing 

Set 𝑰𝒑𝒚𝒓𝒂𝒏𝒐 𝑰𝑴𝑹
𝒘𝒗𝒎 𝑰𝑽𝑰

𝒘𝒗𝒎 

Max battery power 

requirement (MW) 

43.96 10.25 21.34 

Variability scenario    

𝑻𝑹 (s) 6 24 29 

𝚫𝑷𝑹 (p.u of Pnom) 0.93 0.41 0.67 

 

 

Figure 8 Ramp events with the highest battery requirements from sets 𝐼𝑝𝑦𝑟𝑎𝑛𝑜  and 𝐼𝑀𝑅
𝑤𝑣𝑚(method: power 

adequacy sizing). 

Results for day-long scenarios 𝐷
𝑝𝑦𝑟𝑎𝑛𝑜

, 𝐷𝑀𝑅
𝑤𝑣𝑚 and 𝐷𝑉𝐼

𝑤𝑣𝑚 give maximum battery power requirements of 

44.7MW, 16.3MW and 25MW respectively.  

4.1.2 Dynamic model sizing 
To initialize the first interval for the bisection method, the value 𝐶0 was set to the battery capacity found 

in 4.1.1 for the same scenario. Figure 9 shows the power dispatch obtained with both the power adequacy 

method and the dynamic simulation. The role of the frequency shift tolerance as a buffer clearly appears. 

The battery peak power is reduced from 21.34MW to 15.23 MW with the dynamic model with a 

frequency maintained above -0.05 p.u. This confirms the ability of the dynamical model to refine battery 

requirements by taking the kinetic energy of rotors into account. 

 



 

 

Figure 9 Power dispatch of scenario  
𝐼𝑉𝐼

𝑤𝑣𝑚  with  the power adequacy method (dashed lines) and dynamic modelling (continuous lines) 

Similar results are observed for day-long scenarios as shown in Figure 10. The battery power resulting 

from the dynamic simulation is lower than for the power adequacy dispatch.  

 

Figure 10 Power dispatch and frequency of scenario 𝐷𝑉𝐼
𝑤𝑣𝑚  obtained with power adequacy dispatch and 

dynamic simulation 

 

The battery capacities obtained from coupling the optimization method and the dynamic simulation for 

all selected scenarios are presented in Table 4. Figure 11 compares the final battery capacity requirements 

for all scenarios and both sizing methodologies. 

For all scenarios, the battery capacities obtained by dynamic sizing are lower than the capacities obtained 

with power adequacy. Reductions of 8.4%, 25% and 9.8% are observed for day-long scenarios  

𝐷
𝑝𝑦𝑟𝑎𝑛𝑜

, 𝐷𝑀𝑅
𝑤𝑣𝑚 and 𝐷𝑉𝐼

𝑤𝑣𝑚 whereas reductions of 30%, 28% and 14% are observed for isolated scenarios  

   

   

   

   

 
 
  
 
 
 
  
  
  
 

        

 

    

   

 
 
  
 
  
  
 
 
 
  
  
  
 

                        

                 

                                        

    

     

     

 

  
 
 
 
 
 
 
  
  
  
 

         



𝐼
𝑝𝑦𝑟𝑎𝑛𝑜

, 𝐼𝑀𝑅
𝑤𝑣𝑚and 𝐼𝑉𝐼

𝑤𝑣𝑚. This highlights the interest of improving the accuracy and complexity of power 

dispatch models. However, it should be noted that the gap between power adequacy and dynamic sizing 

may be sensitive to inertia constant, damping constant, frequency tolerance and battery control strategy. 

As an example, running the dynamic method for scenario 𝐼𝑉𝐼
𝑤𝑣𝑚 with an inertia constant of 5.51s instead 

of 11.02s gave a battery requirement of 19.42MW. The implementation of such models requires a high 

degree of confidence in power system parameters, which can be a challenge given that manufacturers’ data 

are rarely made public.  

This also comes at the cost of higher computation times, since several iterations are necessary to optimize 

the battery capacity: 19 minutes and 13 seconds are necessary to optimize the battery capacity for scenario 

𝐷
𝑝𝑦𝑟𝑎𝑛𝑜

 whereas 15 seconds are needed to run the power adequacy sizing for the same scenario (test run 

on a standard 4 core CPU with 8Go of RAM ). 

Unlike high model complexity, variability smoothing thanks to WVM has a much larger impact on battery 

capacity reduction. A capacity reduction of 63% is observed between day-long scenarios  

𝐷
𝑝𝑦𝑟𝑎𝑛𝑜

 and 𝐷𝑀𝑅
𝑤𝑣𝑚 and 43% between 𝐷

𝑝𝑦𝑟𝑎𝑛𝑜
 and 𝐷𝑉𝐼

𝑤𝑣𝑚. As for isolated scenarios, capacity reductions 

of 76% between 𝐼
𝑝𝑦𝑟𝑎𝑛𝑜

 and 𝐼𝑀𝑅
𝑤𝑣𝑚and 51% between 𝐼

𝑝𝑦𝑟𝑎𝑛𝑜
 and 𝐼𝑉𝐼

𝑤𝑣𝑚 are observed. The PV power 

plant smoothing effect can therefore be a better lever to reduce battery capacity requirements and avoid 

oversizing. In addition, assumptions made on cloud speed and location to obtain worst-case data tend to 

reduce the smoothing effect, which strengthens the results. 

Additionally, Max ramp scenarios give a lower battery capacity than VI scenarios, regardless of the scenario 

type (isolated versus day-long) or modelling type (power adequacy vs dynamic modelling). Stein’s 

Variability Index is therefore a better metric to qualify and extract the worst-case variability scenario after 

WVM smoothing. 

Finally, differences between day-long scenarios and isolated scenarios should be carefully analyzed. The 

variation in battery capacity between all scenarios should be understood as a high level of uncertainty 

introduced by the choice of a variability scenario. The final battery requirement is generally lower for the 

isolated scenario, with high errors for 𝐼𝑀𝑅
𝑊𝑉𝑀. A difference of 18.5% is observed between  

𝐼𝑉𝐼
𝑤𝑣𝑚 and 𝐷𝑉𝐼

𝑤𝑣𝑚. Despite the potential interest of combining VI and a max-ramp index to extract a worst-

case isolated scenario (0.67% over 29 seconds in this study), the methodology needs to be improved to 

represent the overall variability. 

Table 4 Final battery capacity for isolated and day-long scenarios using dynamic simulation 

 𝑫
𝒑𝒚𝒓𝒂𝒏𝒐

 𝑫𝑴𝑹
𝒘𝒗𝒎 𝑫𝑽𝑰

𝒘𝒗𝒎 𝑰
𝒑𝒚𝒓𝒂𝒏𝒐

 𝑰𝑴𝑹
𝒘𝒗𝒎 𝑰𝑽𝑰

𝒘𝒗𝒎 

Minimum battery 

capacity (MW) 
40.3 15.0 18.7 37.6 7.21 15.23 

Number of iterations 

for optimization 
7 5 6 8 6 7 

Minimum frequency -0.048 -0.011 -0.46 -0.043 -0.038 -0.043 

 

 



 

Figure 11 Summary of battery power requirements for all selected scenarios (blue: dynamic modelling, red: 
power adequacy sizing) 

4.1.3 Economic Analysis 
Bearing in mind the proposed microgrid configuration and the different battery solutions obtained after 

applying the different methodologies, we present a basic economic analysis of the solutions, considering 

two configurations: 

• The first configuration (base case) is the fossil-based solution that provides a 100 MW power 

supply during the 8,760 hours of the year. 

• The second configuration considers the fossil-based power plant plus the 50 MWp solar 

installation and a battery system with a capacity of 1C, with a size corresponding to that presented 

in Table 4. 

The approach is based in the analysis of the LCOE for both solutions, due to its acceptability in the 

evaluation and a comparison of power plant configurations in different contexts (40). In this paper, the 

following were considered: an inflation rate of 3%, a return rate of 7%, and a duration of 20 years for 

computing the LCOE. 

Table 5 shows the different values that were considered in the economic analysis for computing the fixed 

and operational costs of the different components and fuel consumption. The information was extracted 

from available documents and databases providing fuel prices (41) and microgrid components costs (42). 

The chosen values allowed us to perform a relatively optimistic simulation in terms of battery prices, which 

decrease considerably every year, whereas an average value for the gas price was considered, bearing in 

mind the industrial contract that the plant operator might have for distribution. 

 

 

Table 5 Selected prices for performing the economic analysis. 

 
Interval  

Selected 

Value 

Gas price ($ / kWh) 0.00 - 0.125 0.05 

 
  

   
 

  

   
 

      
 
  

   
 
  

   
 
      

 

 

  

  

  

  

  

  

  

  

 
 
  
 
  
  
 
 
 
  
  

 
 

       

              



PV price ($ / kWp)* 0.50 - 1.10 0.88 

PV OPEX ($ / MWp / yr) 250 - 1000 500 

PV power degradation (% / yr) 0.1 – 1.0 0.5 

Battery Price ($ / kWh) ** 350 – 600  495 

Battery inverter ($ / kW)** 150 - 220 200 

Battery system OPEX (% of CAPEX/yr) 0.1 - 0.5 0.5  
*Includes Inverters, Cabling, Installation 

**Includes Cabling, Installation 

After performing the computations, the LCOE for the base solution was $145.5 /MWh, in which the fuel 

amounts to a cost of $100.31 M for operations during the first year. 

For the solutions that include the battery system, in which the added storage is considered only for covering 

renewable intermittence events, the fuel savings increase to $7.12 M thanks to the theoretical production 

of 74,829.1 MWh from the solar installation.  

Adding the battery system, the LCOE values obtained, condensed in Table 6, vary from $119.06 /MWh 

when using the battery obtained from the 𝐼𝑀𝑅
𝑉𝑊𝑀 and the dynamic sizing methodology (7.21 MWh), up to 

$123.08 /MWh when using the 𝐼
𝑃𝑦𝑟𝑎𝑛𝑜

proposal with power adequacy. This initial analysis, which needs 

to be supported by a more in-depth sensitivity analysis and an economic-oriented dispatch strategy that 

will be detailed in a further contribution, reduces the LCOE for the proposed conditions to 3.26%.  

Table 6 LCOE results for the different battery proposals per storage system methodology. 

Dynamic 𝑫𝑴𝑹
𝒘𝒗𝒎 𝑫𝑴𝑹

𝒘𝒗𝒎 𝑫
𝒑𝒚𝒓𝒂𝒏𝒐

 𝑰𝑴𝑹
𝒘𝒗𝒎 𝑰𝑴𝑹

𝒘𝒗𝒎 𝑰
𝒑𝒚𝒓𝒂𝒏𝒐

 

Battery Size 15.23 18.7 40.3 7.21 15.0 37.6 

LCOE ($/MWh) 120.00 120.29 122.61 119.05 119.89 122.23 

Power Adequacy 𝑫𝑴𝑹
𝒘𝒗𝒎 𝑫𝑴𝑹

𝒘𝒗𝒎 𝑫
𝒑𝒚𝒓𝒂𝒏𝒐

 𝑰𝑴𝑹
𝒘𝒗𝒎 𝑰𝑴𝑹

𝒘𝒗𝒎 𝑰
𝒑𝒚𝒓𝒂𝒏𝒐

 

Battery Size (MWh) 16.4 25.2 44.72 10.2 21.34 44.0 

LCOE ($/MWh) 120.04 120.98 123.08 119.37 120.57 123.01 

 

5 Conclusion  
This paper looks at the problem of battery sizing for off-grid hybrid systems. It includes a comparison of 

the roles of solar variability scenarios and sizing methodology complexity in battery requirement 

calculations.  

A yearly Global-Horizontal Irradiance (GHI) dataset showing conservative variability characteristics was 

identified to extract variability scenarios. Two metrics were used to address the daily solar variability: the 

maximum number of ramps detected by a ramp detection algorithm, and the variability index proposed 

by Stein et al. Six scenarios were then proposed: raw pyranometer GHI versus wavelet-variability-model 

(WVM) smoothed irradiance, day-long versus isolated ramp scenarios, and maximum ramp versus 

variability index.  

The impact of these variability scenarios on battery sizing was then studied using two different sizing 

methodologies with varying levels of complexity. The simple method (power adequacy) consists in 

ensuring the power equilibrium between power sources and loads using the battery system as an 

adjustment variable. The complex method takes power system dynamics into account and consists in 

identifying the minimum battery capacity that satisfies power quality constraints.  

The results show that applying WVM smoothing in order to take a plant’s geographic smoothing into 

account has more potential to reduce battery capacity oversizing than increasing the sizing method 

complexity (51% against 25%).  



This shows that the power plant smoothing effect and the proper variability scenario extracted are crucial 

for estimating battery capacity and must not be neglected during hybrid power plant sizing. Neglecting the 

power plant smoothing effect may lead to a significant over-estimation of the battery capacity, and therefore 

higher electricity costs. On the other hand, a proper scenario identification method avoids battery under-

estimation and therefore prevents the degradation of power quality and grid reliability. This can be 

illustrated by basic economic analysis of the hybrid solutions in which the battery system overestimation 

will increase the levelized costs of electricity of the system, thus representing additional operational costs. 

Lastly, the combination of VI and a ramp-detection algorithm to identify a worst-case isolated ramp 

scenario led to an error of 18.5% as compared to the day-long simulation. One perspective to continue 

with this work is to improve the isolated scenario generation to obtain a better match with worst-case day-

long scenarios and simplify battery sizing procedures. 

6 Annex 

6.1 Annex 1 Ramp detection algorithm 

 

Figure 12 Ramp-detection algorithm 

𝑁𝑟𝑎𝑚𝑝 = 0 

While i < 𝑁𝑇𝑆   

    𝑃′ = 𝑃𝑃𝑉(𝑖) - 𝑃𝑃𝑉 (𝑖 − 1) 

    k=0 

    if 𝑃′ < A 

        𝑁𝑟𝑎𝑚𝑝 = 𝑁𝑟𝑎𝑚𝑝 + 1  

        𝑃′2 = 𝑃′ 

        While (i+k < 𝑁𝑇𝑆) and sign(𝑃′) =  sign(𝑃2
′) 

            𝑃2
′ = 𝑃𝑃𝑉(𝑖 + 𝑘) − 𝑃𝑃𝑉(𝑖 + 𝑘 − 1) 

            k = k+1 

 

    𝑇𝑅(𝑁𝑟𝑎𝑚𝑝) = 𝑘 

    Δ𝑃𝑅(𝑁𝑟𝑎𝑚𝑝) = 𝑃𝑃𝑉(𝑖 − 1) − 𝑃𝑃𝑉(𝑖 + 𝑘 − 1)  

 

    if k=0 

        i=i+1 

    else i=i+k 



6.2 Annex 2 Battery sizing optimization procedure  

 

Figure 13 Battery optimization procedure 
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